On-line map-making and diagnostics of oil pollutions of the sea surface using multifrequency radar data

1Belobrova, MV, 2Boyev, AG, 3Kabanov, AV, 3Matveev, AYa., 3Tsymbal, VN
1O.Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Science of Ukraine, Kharkiv, Ukraine
2Institute of Radio Astronomy of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
3A.I. Kalmykov Center for Radio Physical Sensing, NAS of Ukraine and National Space Agency of Ukraine, Kharkiv, Ukraine
Kosm. nauka tehnol. 2009, 15 ;(5):24-33
https://doi.org/10.15407/knit2009.05.024
Publication Language: Russian
Abstract: 
The realization of the method for on-line map construction of oil contaminations of sea surface is described. The method allows one to construct map directly aboard an airplane during the synchronous two-frequency radar surveying. The algorithms and software for onboard processing of surveying results are developed. They allow one to estimate operative-ly the film thickness in every pixel of radar images, to plot the map for the distribution of the oil film thicknesses on the overall image and, at the direction of the operator, to estimate the amount of the spilled oil, both on a separate area and on the overall image. The method is based on the comparison of theoretical and experimental radar contrasts of oil-polluted sea surface. It was used for the map-making of oil film thickness distribution in the oil-producing area «Neftyanie Kamni» in the Caspian Sea. The maps were constructed using the processing results of two X- and L-band radar images which were оbtained with the airborne multi-frequency radar complex MARS. The mapping analysis showed that the film thickness on the oil-producing area changed from 0.01 mm to 3 mm and the total mass of the spilled oil was about 44000 tons. The analysis enabled us to find the most polluted water areas and to estimate the amount of the oil spilled there.
Keywords: mapping, oil-producing area, radar images
References: 
1. Belobrova M. V., Boev A. G., Ivanov V. K., et al. Results of the multifrequency radar monitoring of sea swell inhomogeneities. Kosm. nauka tehnol., 8 (2-3), 275—278 (2002) [in Russian].
2. Boev A. G., Karvitsky G. E. On Theory of Radar Sea Contrast in Presence of Surface-Active Film. I. Resonant scattering; II. Small Incidence Angles. Radio Physics and Radio Astronomy, 2 (3), 281—287; 288—291 (1997) [in Russian].
3. Boev A. G., Karvitsky G. E., Matvyeyev A. Y., Tsymbal V. M. Estimate of Oil Film Parameters on Sea Surface by Means of Multifrequency Radaring. Radio Physics and Radio Astronomy, 3 (1), 43—48 (1998) [in Russian].
4. Boev A. G., Matveev A. Ya. Radar Detection of Emergency Spill Oil in Caspian Oilfield  Oil Craters. In: Modern problems of remote sensing of the Earth from space: Third open All-Russian Conf.: Proceedings, November 14—17, 2005, Moscow, 157 (Moscow, 2005) [in Russian].
5. Boev A. G., Matveev A. Ya. Radar monitoring of emergency oil spill in the Caspian oilfield "Oil Stones". In: Suchasni tehnologii' upravlinnja ekologichnoju ta informacijnoju bezpekoju terytorii': International Scientific and Practical Conference, September 5—9, 2005, Rybachy, Crimea, 138—139 (2005) [in Russian].
6. Boev A. G., Matvyeyev A. Y. The Amount Estimation of Oil Pollutants in the Oil-Producing Area “Oil Stones” in the Caspian Sea Using Multifrequency Radar Data. Radio Physics and Radio Astronomy, 10 (2), 178—188 (2005) [in Russian].
7. Boev A. G., Matveev A. Ya. A radar method for the estimation of parameters of oil pollution of the sea surface. Issledovanie Zemli iz Kosmosa, No. 5, 29—36 (2008) [in Russian].
8. Boev A. G., Matveev A. Ya., Tsymbal V. N. Operational monitoring of marine contaminated sea-surface oil products by radar means of remote sensing of aerospace base. In: Mozhlyvosti suchasnyh GIS/DZZ-tehnologij u spryjanni vyrishennja problem prychornomors'kogo regionu: Materialy regional'noi' narady, November 11—14, 2003, Odessa, Ukraine, 65—67 (Odessa, 2003) [in Russian].
9. Boev A. G., Yasnitskaya N. N. Surface wave attenuation coefficient under surfactant film of finite hydrodynamic thickness. Prykladna Hidromekhanika, 4 (4), 14—22 (2002) [in Russian].
10. Boev A. G., Yasnitskaya N. N. Sea-wave suppression by a finite-thickness film of surface-active matter. Izv. RAN. Fizika atmosfery i okeana, 39 (1), 132— 141 (2003) [in Russian].
11. Galaev Y. M., Kalmykov A. I., Kurekin A. S., et al. Radar detection of oil pollution of the sea surface. Izv. AN SSSR. Fizika atmosfery i okeana, 13 (4), 406—414 (1977) [in Russian].
12. Kalmykov A. I., Tsymbal V. M., Kurekin O. S., et al. Multipurpose Airborne Earth's Remote Sensing Radar System “MARS”. Radio Physics and Radio Astronomy, 3 (2), 119—129 (1998) [in Russian].
13. Levich V. G. Physicochemical Hydrodynamics, 669 p. (GITTL, Moscow, 1959) [in Russian].
14. Litovchenko K. Ts., Lavrova O. Yu., Mityagina M. I. et al. Oil pollution in the eastern Black Sea: monitoring from space and sub-satellite verification. Issledovanie Zemli iz Kosmosa, No. 1, 81—94 (2007) [in Russian].
15. Matveev A. Ya., Boev A. G. Radar method for estimating the parameters of oil pollution of the sea surface. Dostizhenija v sputnikovoj okeanografii: izuchenie i monitoring okrainnyh morej Azii: Materialy mezhdunarodnoj nauchnoj konferencii, October 3—6, 2007, Vladivostok, 83—85 (Vladivostok, 2007) [in Russian].
16. Konyukhov S. N., Dranovskii V. I., Tsymbal V. N. (Eds.) Radar Methods and Tools for Operational Remote Sensing of the Earth from Aerospace Carriers), 439 p. (NAS of Ukraine, Kiev, 2007) [in Russian].
17. Belobrova M. V., Boev A. G., Ivanov V. K., et al. Experimental multifrequency investigations into the sea surface roughness inhomogeneities through the use of the MARS radar system. Proc. 4-th European Conf. on Syntheric Aperture Radar, EUSAR 2002: 4—6 June 2002, 733—736 (VDE VERLAG GMBH *Berlin* Offenbach, Cologne (Germany), 2002).
18. Boyev A. G., Karvitsky G. E., Matveyev A. Ya., Tsymbal V. N. Evaluation of oil film parameters on the sea surface using multifrequency radar data. Telecommunications and Radio Engineering, 51 (8), 4—12 (1997).
https://doi.org/10.1615/TelecomRadEng.v51.i8.20
19. Grüner K., Reuter R., Smid H. A new sensor system for airborne measurements of maritime pollution and hydrografic parameters. GeoJournal, 24 (1), 103—117 (1991).
https://doi.org/10.1007/BF00213062
20. Krishen K. Detection of oil spills using a 13.3-GHz radar scatterometer. J. Geophys. Res., 78 (12), 1952—1963 (1973).
https://doi.org/10.1029/JC078i012p01952
21. Pilon R. O., Purves C. G. Radar imagery of oil slicks. IEEE Trans. Aerosp. Electron. Syst., AES-9, N 5, 630—636 (1973).
https://doi.org/10.1109/TAES.1973.309743
22. Reinsh C. H. Smoothing by spline functions. Numer. Math., 10, 177—183 (1967).
https://doi.org/10.1007/BF02162161
23. Sharkov E. A. Passive microwave remote sensing of the Earth. Physical foundations, 611 p. (Praxis Publishing Ltd, Chichester, UK, 2003).

24. Vimont D. J., Kossin J. P. The atlantic meridional mode and hurricane activity. Geophys. Res. Letters, 34, 1—5 (L07709, doi:10.1029/2007GL029683) (2007).