Identification of dynamical models for Dst-index forecasting

1Semeniv, OV, 1Yatsenko, VO
1Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2010, 16 ;(1):55-60
https://doi.org/10.15407/knit2010.01.055
Publication Language: Russian
Abstract: 
The new method of dynamic model identification for Dst-index prediction by using experimental data is proposed. The method is based on the reconstruction of the nonlinear discrete dynamic system that gives the prediction of the geomagnetic index value with a high level of correlation to the real data. The genetic programming was used for the simulation of structure and parameters identification for Dst-index pre­diction. Predictive values of the Dst-index dynamics for 1-9 hours ahead are derived.
Keywords: dynamical models, genetic programming, geomagnetic index
References: 
1. Semeniv O. V., Sidorenko V. I., Cheremnykh O. K., et al. Optimization approach to space weather prediction. Problemy upravlennija i informatiki, No. 4, 115—130 (2008) [in Russian].
2. Baker D. N., Klimas A. J., McPherron R. L., Buchner J. The evolution from weak to strong geomagnetic activity: an interpretation in terms of deterministic chaos. J. Geophys., 17 (1), 41—44 (1990).
https://doi.org/10.1029/gl017i001p00041
3. Balikhin M., Bates I., Walker S. N. Identification of linear and nonlinear processes in space plasma turbulence. Adv. Space, 28, 787–800 (2001).
https://doi.org/10.1016/S0273-1177(01)00515-4
4. Billings S. A., Wei H. L. The wavelet-NARMAX representation: a hybrid model structure combining the polynomial models and multiresolution wavelet decompositions. Int. J. Systems Science, 36 (3), 137–152 (2005).
https://doi.org/10.1080/00207720512331338120
5. Boaghe O. M., Balikhin M. A., Billings S. A., Alleyne H. Identification of nonlinear processes in the magnetosphere dynamics and forecasting of Dstindex. J. Geophys., 106, 30047–30066 (2001).
https://doi.org/10.1029/2000JA900162
6. Burton R. K., McPherron R. L., Russell C. T. An empirical relationship between interplanetary conditions and Dst. J. Geophys., 80, 4204–4214 (1975).
https://doi.org/10.1029/JA080i031p04204
7. Chen S., Billings S. A., Cowan C. F. N., Grant P. M. Practical identification of NARMAX models using radial basis functions. Int. J. Control., 52, 1327– 1350 (1990).
https://doi.org/10.1080/00207179008953599
8. Chen S., Billings S. A. Neural networks for nonlinear dynamic system modelling and identification. Int. J. Control, 56, 319–346 (1992).
https://doi.org/10.1080/00207179208934317
9. Cheremnykh O., Yatsenko V., Semeniv O., Shatokhina Iu. Nonlinear dynamical model for space weather prediction. Ukr. fiz. zhurn., 53 (5), 502—505 (2008).
10. Goertz C. K., Shan L. H., Smith R. A. Prediction of geomagnetic activity. J. Geophys., 98, 7673– 7684 (1993).
https://doi.org/10.1029/92JA01193
11. Goodman J. M. Space Weather & Telecommunication, 382 p. (Kluwer, New York, 2005).
12. Koza J. R. Genetic Programming: On the programming of Computers by Means of Natural Evolution, 819 p. (MIT Press, Cambridge, 1992).
13. Kuntzevich V. M., Cheremnykh O. K., Semeniv O. V., Yatsenko V. A. Space weather and its effects: modeling, prediction and risk analysis. 9th Ukrainian conference on space research: Abstracts, Yevpatoria, Crimea, Ukraine, August 31 – September 5, 2009, P. 26 (2009).
14. Leontaritis I. J., Billings S. A. Input-output parametric models for nonlinear systems. Int. J. Control, 41, 303–344 (1985).
https://doi.org/10.1080/0020718508961129
15. Leontaritis I. J., Billings S. A. Model selection and validation methods for nonlinear systems. Int. J. Control, 45, 311–341 (1987).
https://doi.org/10.1080/00207178708933730
16. Madar J. Genetic programming for the identification of nonlinear input-output models. Industrial and Engineering Chemistry Res., 44 (9), 3178–3186 (2005).
https://doi.org/10.1021/ie049626e
17. Schindler K. Physics of Space Plasma Activity, 508 p. (Cambridge Univ. Press, Cambridge, 2007).
18. Semeniv O. V. Space weather prediction using evolution algorithms. 8th Ukrainian Conference on Space Research: Abstracts, Yevpatoria, Ukraine, September 1–7, 2008, P. 60 [in Russian].
19. Sharifi J., Araabi B. N., Lucas C. Multi-step prediction of Dstindex using singular spectrum analysis and locally linear neurofuzzy modelling. Earth Planets Space, 58 (3), 331–341 (2006).
https://doi.org/10.1186/BF03351929
20. Wei H. L., Billings S. A. A unified wavelet-based modelling framework for nonlinear system identification: the WANARX model structure. Int. J. Control, 77 (4), 351–366 (2004).
https://doi.org/10.1080/0020717042000197622
21. Wei H. L., Zhu D. Q., Billings S. A., Balikhin M. A. Forecasting the geomagnetic activity of the Dstindex using multiscale radial basis function networks. Adv. Space Res., 40, 1863–1870 (2007).