Identification of dynamical models for Dst-index forecasting
Heading:
1Semeniv, OV, 1Yatsenko, VO 1Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine |
Kosm. nauka tehnol. 2010, 16 ;(1):55-60 |
https://doi.org/10.15407/knit2010.01.055 |
Publication Language: Russian |
Abstract: The new method of dynamic model identification for Dst-index prediction by using experimental data is proposed. The method is based on the reconstruction of the nonlinear discrete dynamic system that gives the prediction of the geomagnetic index value with a high level of correlation to the real data. The genetic programming was used for the simulation of structure and parameters identification for Dst-index prediction. Predictive values of the Dst-index dynamics for 1-9 hours ahead are derived.
|
Keywords: dynamical models, genetic programming, geomagnetic index |
References:
1. Semeniv O. V., Sidorenko V. I., Cheremnykh O. K., et al. Optimization approach to space weather prediction. Problemy upravlennija i informatiki, No. 4, 115—130 (2008) [in Russian].
2. Baker D. N., Klimas A. J., McPherron R. L., Buchner J. The evolution from weak to strong geomagnetic activity: an interpretation in terms of deterministic chaos. J. Geophys., 17 (1), 41—44 (1990).
https://doi.org/10.1029/gl017i001p00041
https://doi.org/10.1029/gl017i001p00041
3. Balikhin M., Bates I., Walker S. N. Identification of linear and nonlinear processes in space plasma turbulence. Adv. Space, 28, 787–800 (2001).
https://doi.org/10.1016/S0273-1177(01)00515-4
https://doi.org/10.1016/S0273-1177(01)00515-4
4. Billings S. A., Wei H. L. The wavelet-NARMAX representation: a hybrid model structure combining the polynomial models and multiresolution wavelet decompositions. Int. J. Systems Science, 36 (3), 137–152 (2005).
https://doi.org/10.1080/00207720512331338120
https://doi.org/10.1080/00207720512331338120
5. Boaghe O. M., Balikhin M. A., Billings S. A., Alleyne H. Identification of nonlinear processes in the magnetosphere dynamics and forecasting of Dstindex. J. Geophys., 106, 30047–30066 (2001).
https://doi.org/10.1029/2000JA900162
https://doi.org/10.1029/2000JA900162
6. Burton R. K., McPherron R. L., Russell C. T. An empirical relationship between interplanetary conditions and Dst. J. Geophys., 80, 4204–4214 (1975).
https://doi.org/10.1029/JA080i031p04204
https://doi.org/10.1029/JA080i031p04204
7. Chen S., Billings S. A., Cowan C. F. N., Grant P. M. Practical identification of NARMAX models using radial basis functions. Int. J. Control., 52, 1327– 1350 (1990).
https://doi.org/10.1080/00207179008953599
https://doi.org/10.1080/00207179008953599
8. Chen S., Billings S. A. Neural networks for nonlinear dynamic system modelling and identification. Int. J. Control, 56, 319–346 (1992).
https://doi.org/10.1080/00207179208934317
https://doi.org/10.1080/00207179208934317
9. Cheremnykh O., Yatsenko V., Semeniv O., Shatokhina Iu. Nonlinear dynamical model for space weather prediction. Ukr. fiz. zhurn., 53 (5), 502—505 (2008).
10. Goertz C. K., Shan L. H., Smith R. A. Prediction of geomagnetic activity. J. Geophys., 98, 7673– 7684 (1993).
https://doi.org/10.1029/92JA01193
https://doi.org/10.1029/92JA01193
11. Goodman J. M. Space Weather & Telecommunication, 382 p. (Kluwer, New York, 2005).
12. Koza J. R. Genetic Programming: On the programming of Computers by Means of Natural Evolution, 819 p. (MIT Press, Cambridge, 1992).
13. Kuntzevich V. M., Cheremnykh O. K., Semeniv O. V., Yatsenko V. A. Space weather and its effects: modeling, prediction and risk analysis. 9th Ukrainian conference on space research: Abstracts, Yevpatoria, Crimea, Ukraine, August 31 – September 5, 2009, P. 26 (2009).
14. Leontaritis I. J., Billings S. A. Input-output parametric models for nonlinear systems. Int. J. Control, 41, 303–344 (1985).
https://doi.org/10.1080/0020718508961129
https://doi.org/10.1080/0020718508961129
15. Leontaritis I. J., Billings S. A. Model selection and validation methods for nonlinear systems. Int. J. Control, 45, 311–341 (1987).
https://doi.org/10.1080/00207178708933730
https://doi.org/10.1080/00207178708933730
16. Madar J. Genetic programming for the identification of nonlinear input-output models. Industrial and Engineering Chemistry Res., 44 (9), 3178–3186 (2005).
https://doi.org/10.1021/ie049626e
https://doi.org/10.1021/ie049626e
17. Schindler K. Physics of Space Plasma Activity, 508 p. (Cambridge Univ. Press, Cambridge, 2007).
18. Semeniv O. V. Space weather prediction using evolution algorithms. 8th Ukrainian Conference on Space Research: Abstracts, Yevpatoria, Ukraine, September 1–7, 2008, P. 60 [in Russian].
19. Sharifi J., Araabi B. N., Lucas C. Multi-step prediction of Dstindex using singular spectrum analysis and locally linear neurofuzzy modelling. Earth Planets Space, 58 (3), 331–341 (2006).
https://doi.org/10.1186/BF03351929
https://doi.org/10.1186/BF03351929
20. Wei H. L., Billings S. A. A unified wavelet-based modelling framework for nonlinear system identification: the WANARX model structure. Int. J. Control, 77 (4), 351–366 (2004).
https://doi.org/10.1080/0020717042000197622
https://doi.org/10.1080/0020717042000197622
21. Wei H. L., Zhu D. Q., Billings S. A., Balikhin M. A. Forecasting the geomagnetic activity of the Dstindex using multiscale radial basis function networks. Adv. Space Res., 40, 1863–1870 (2007).