Geometric properties of solar wind discontinuities on the Earth’s orbit
Heading:
1Reshetnyk, VN, 1Agapitov, AV 1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine |
Kosm. nauka tehnol. 2010, 16 ;(1):68-76 |
https://doi.org/10.15407/knit2010.01.068 |
Publication Language: Russian |
Abstract: We analyzed the solar wind discontinuity geometry near the Earth’s orbit on the basis of measurements from the Wind, ACE, STEREO A, and STEREO B spacecrafts during 2007. A case study of discontinuity events based on the STEREO A, STEREO B, ACE and Wind measurements is presented. The dependence of the normal direction obtained by different spacecrafts on the cross spacecraft distance was analysed. It is found that the estimated curvature radii of discontinuity front is independent on spatial scale in the range of STEREO A and STEREO B observations. The curvature radii of processed events are found to be of the order of a thousand of RE.
|
Keywords: discontinuity, solar wind, waves |
References:
1. Andreeova K., Prech L. Propagation of interplanetary shocks into the Earth’s magnetosphere. Adv. Space Res., 40 (12), 1871—1880 (2007).
https://doi.org/10.1016/j.asr.2007.04.079
https://doi.org/10.1016/j.asr.2007.04.079
2. Andreeova K., Pulkkinen T. I., Laitinen T. V., Prech L. Shock propagation in the magnetosphere: Observations and MHD simulations compared. J. Geophys. Res., 113A (9) (2008).
3. Burlaga L. F. Interplanetary streams and their interaction with the Earth. Space Sci. Revs., 17, 327—352 (1975).
https://doi.org/10.1007/BF00718578
https://doi.org/10.1007/BF00718578
4. Cid C., Hidalgo M. A., Nieves-Chinchilla T., et al. Plasma and magnetic field inside magnetic clouds: A global study. Solar Phys., 207 (1), 187—198 (2002).
https://doi.org/10.1023/A:1015542108356
https://doi.org/10.1023/A:1015542108356
5. Gold R. E., Krimigis S. M., Hawkins S. E., et al. Electron, proton, and alpha monitor on the advanced composition Explorer spacecraft. Space Sci. Revs., 86 (1-4), 541—562 (1998).
https://doi.org/10.1023/A:1005088115759
https://doi.org/10.1023/A:1005088115759
6. Khrabrov A. V., Sonnerup B. U. Ö. Error estimates for minimum variance analysis. J. Geophys. Res., 103A (4), 6641—6652 (1998).
https://doi.org/10.1029/97JA03731
https://doi.org/10.1029/97JA03731
7. Lepping R. P., McClearnan Wu C. C. Two-dimensional curvature of large angle interplanetary MHD discontinuity surfaces: IMP-8 and WIND observations. J. Geophys. Res., 108A (7), 1279—1292 (2003).
https://doi.org/10.1029/2002JA009640
https://doi.org/10.1029/2002JA009640
8. Lin R. P., Anderson K. A., Ashford S., et al. A three-dimensional plasma and energetic particle investigation for the Wind spacecraft. Space Sci. Revs., 71 (1-4), 125—153 (1995).
https://doi.org/10.1007/BF00751328
https://doi.org/10.1007/BF00751328
9. Luhmann J. G., Curtis D. W., Schroeder P., et al. STEREO IMPACT investigation goals, measurements, and data products overview. Space Sci. Revs., 136 (1-4), 117—184 (2008).
https://doi.org/10.1007/s11214-007-9170-x
https://doi.org/10.1007/s11214-007-9170-x
10. McKenna-Lawlor S. M. P., Dryer M., Smith Z., et al. Arrival times of Flare/Halo CME associated shocks at the Earth: comparison of the predictions of three numerical models with these observations. Ann. Geophys., 20 (7), 917—935 (2002).
https://doi.org/10.5194/angeo-20-917-2002
https://doi.org/10.5194/angeo-20-917-2002
11. Mulligan T., Russell C. T. Multispacecraft modeling of the flux rope structure of interplanetary coronal mass ejections: Cylindrically symmetric versus nonsymmetric topologies. J. Geophys. Res., 106A (6), 10581—10596 (2001).
https://doi.org/10.1029/2000JA900170
https://doi.org/10.1029/2000JA900170
12. Prech L., Nemecek Z., Safrankova J. Response of magne-tospheric boundaries to the interplanetary shock: Themis contribution. J. Geophys. Res., 35 (17), CiteID L17S02 (2008).
13. Russell C. T., Gosling J. T., Zwickl R. D., Smith E. J. Multiple spacecraft observations of interplanetary shocks: ISEE three-dimensional plasma measurements. J. Geophys. Res., 88, 9941—9947 (1983).
https://doi.org/10.1029/JA088iA12p09941
https://doi.org/10.1029/JA088iA12p09941
14. Shastun V. V., Agapitov O. Propagation of the fast MHD wave. Earth Magnetosphere Generated by Sudden Impulses in the Solar Wind: Proc. of the 17th Annual Conference of Doctoral Students, WDS 2008/ f-2, 133— 137 (2008).
15. Smith C. W., L’Heureux J., Ness N. F., et al. The ACE magnetic fields experiment. Space Sci. Revs, 86 (1-4), 613—632 (1998).
https://doi.org/10.1023/A:1005092216668
https://doi.org/10.1023/A:1005092216668
16. Sonnerup B. U. O., Cahill L. J. Magnetopause structure and attitude from Explorer 12 observations. J. Geophys. Res., 72, 171—186 (1967). ut-grid-align:none; text-autospace:none'>19. Sharifi J., Araabi B. N., Lucas C. Multi-step prediction of Dstindex using singular spectrum analysis and locally linear neurofuzzy modelling. Earth Planets Space, 58 (3), 331–341 (2006).
https://doi.org/10.1186/BF03351929
https://doi.org/10.1186/BF03351929