Statistical characteristics of the geophysical fields disturbed by weather fronts
1Chernogor, LF 1V.N. Karazin National University of Kharkiv, Kharkiv, Ukraine |
Space Sci. & Technol. 2024, 30 ;(3):80-94 |
https://doi.org/10.15407/knit2024.03.080 |
Publication Language: Ukrainian |
Abstract: The Earth (internal spheres)–atmosphere–ionosphere–magnetosphere (EAIM) formation is a single integrated system with direct and reverse, positive and negative coupling, as well as with their combination. The high-energy sources of natural and anthropogenic origins activate coupling between the components of the EAIM. The effects that the sources of various physical nature have on the EAIM system have been studied quite well, while the influence of the weather fronts and other powerful atmospheric sources on the EAIM system and its components has been studied only partly.
The scientific objective of this study is to conduct a statistical analysis of variations in the basic parameters of the geophysical fields that accompany the movement of atmospheric fronts. The histograms have been constructed that show the atmospheric pressure difference, atmospheric temperature difference, duration of the action of the atmospheric front, and the rate of change in the pressure and temperature, as well as the histograms showing the distribution of variations in the atmospheric electric field, the atmospheric current density, and in the magnetic field. The analysis undertaken has shown that these parameters exhibit variations within a broad range of values. The mean values of these parameters are estimated to be 145 Pa, 6 °C, 70 min, 2.4 Pa/min, 0.23 °C/min, 3.2 kV/m, 63 nA/m2, and 20 nT, respectively. The analysis of the scatter diagrams shows that the correlation between the variation in physical parameters is almost always absent. This means that a single governing parameter along the path of the atmospheric front does not exist. A simplified analytical relation has been derived to estimate the perturbation in the electric field strength caused by the atmospheric front, which yields ~6–60 kV/m values that increase by an order of magnitude during thunderstorms. Under disturbed conditions, the atmospheric current density is shown to increase from 10–12 A/m2 to 10–11–10–10 A/m2.
The following three mechanisms of an increase in the magnetic induction under the influence of the atmospheric front are considered: the disturbances of the external current density, electromagnetic induction, and the magnetic effect of turbulence. All these mechanisms yield the value of the effect less than ~1 nT. Only the magnetic effect of the ionosphere can explain an increase of 10–70 nT in the magnetic field variations. The energetics of the pressure, temperature, electric, and magnetic fields has been estimated to be (~1016–1017 J, ~1013–1014 W), (~1018–1019 J, 1015–1016 W), (~109–1011 J, ~106–108 W), (~1010–1011 J, 107–108 W), respectively. The following channels have been validated through which the components of the EAIM system couple under the action of atmospheric fronts: atmospheric pressure differences, ionospheric electron density differences, the generation of infrasound and gravity waves, the generation of electromagnetic waves by lightning flashes, and the perturbations in the global electric circuit.
|
Keywords: atmosphere at the air-earth boundary, EAIM system, geophysical fields, histogram, scatter diagram, statistical characteristics, weather front |
1. Avdyushin S. I., Sedunov Yu. S., Borisenkov E. P., et al. eds. (1991). Atmosphere. Handbook. (Reference Data and Models). Leningrad: Gidrometeoizdat [in Russian].
2. Burmaka V. P., Domnin I. F., Uryadov V. P., Chernogor L. F. (2009). Variations in the Parameters of Scattered Signals and the Ionosphere Connected with Plasma Modification by High-Power Radio Waves. Radiophys. Quantum Electron., 52(11), 774-795.
https://doi.org/10.1007/s11141-010-9191-2
3. Gossard E. E., Hooke W. H. (1975). Waves in the Atmosphere. New York: Elsevier, 456 p.
4. Imyanitov I. M., Shifrin K. S. (1962). Present State of Research on Atmospheric Electricity. Phys. Usp., 76(4), 593-642.
https://doi.org/10.3367/UFNr.0076.196204a.0593
5. Soloviev S. P., Rybnov Yu. S., Kharlamov V. A. (2015). The synchronic disturbances of the acoustic and electric fields caused by artificial and natural sources. Abstracts of 3rd All-Russian Seminar-Meeting on Trigger Effects in Geosystems. Eds V. V. Adushkin, G. G. Kocheryan. Moscow: GEOS Publ., 71 [in Russian].
6. Soloviev S. P., Rybnov Yu. S., Kharlamov V. A. (2015). The synchronic disturbances of the acoustic and electric fields caused by artificial and natural sources. Trigger Effects in Geosystems. Proc. 3rd All-Russia Meeting. Eds V. V. Adushkin, G. G. Kocheryan. Moscow, Russia: GEOS Publ., 317-326 [in Russian].
7. Somsikov V. M. (1983). Solar terminator and dynamic phenomena in the atmosphere. Alma-Ata, Kazakhstan: Nauka Publ. [in Russian].
8. Somsikov V. M. (1991). Waves in the Atmosphere Caused by the Solar Terminator: A Review. Geomag. Aeron., 31(1), 1-12 [in Russian].
9. Spivak A. A., Loktev D. N., Rybnov Yu. S., Soloviev S. P., Kharlamov V. A. (2016). Geophysical fields of a megalopolis. Izv. Atmos. Ocean. Phys., 52(8), 841-852.
https://doi.org/10.1134/S0001433816080107
10. Spivak A. A., Rybnov Yu. S., Soloviev S. P., Kharlamov V. A. (2017). Acoustic and electric precursors of heavy thunderstorm under megalopolis conditions. Geophys. processes and biosphere, 16(4), 81-91 [in Russian].
https://doi.org/10.21455/GPB2017.4-7
11. Spivak A. A., Rybnov Yu. S., Kharlamov V. A. (2018). Variations in Geophysical Fields during Hurricanes and Squalls. Dokl.Earth Sci., 480, 788-791.
https://doi.org/10.1134/S1028334X18060193
12. Spivak A. A., Riabova S. A., Kharlamov V. A. (2019). The Electric Field in the Surface Atmosphere of the Megapolis of Moscow. Geomagn. Aeron., 59(4), 467-478.
https://doi.org/10.1134/S0016793219040169
13. Spivak A. A., Riabova S. A. (2021). Electrical and Geomagnetic Effects during Powerful Atmospheric Fronts. Dynamic processes in geospheres, 13, 123-131.
https://doi.org/10.26006/22228535_2021_1_123
14. Chalmers J. A. (1967). Atmospheric electricity. Oxford, New York: Pergamon Press.
https://doi.org/10.1016/B978-0-08-012005-8.50019-7
15. Chekryzhov V. M., Svirkunov P. N., Kozlov S. V. (2019). The Influence of Cyclonic Activity on the Geomagnetic Field Disturbance. Geomagn. Aeron., 59(1), 53-61.
https://doi.org/10.1134/S0016793219010031
16. Chernogor L. F. (2009). Radiophysical and Geomagnetic Effects of Rocket Engine Burn: Monograph. Kharkiv, Ukraine: V. N. Karazin Kharkiv Nat. Univ. Publ. [in Russian].
17. Chernogor L. F. (2012). Physics and Ecology of Disasters. Kharkiv: V. N. Karazin Kharkiv Nat. Univ. Publ. [in Russian].
18. Chernogor L. F. (2014). Physics of High-Power Radio Emissions in Geospace: Monograph. Kharkiv: V. N. Karazin Kharkiv Nat. Univ. Publ. [in Russian].
19. Chernogor L. F., Garmash K. P. (2018). Magnetospheric and Ionospheric Effects Accompanying the Strongest Technogenic Catastrophe. Geomagn. Aeron., 58(5), 673-685.
https://doi.org/10.1134/S0016793218050031
20. Chernogor L. F. (2019). Physical Effects of the Lipetsk Meteoroid. Parts 1-3. Kinematics and Physics of Celestial Bodies,
https://doi.org/10.3103/S0884591319060023
Part 1, 35(4), 174-188. DOI:10.3103/S0884591319040020 ,
https://doi.org/10.3103/S0884591319040020
Part 2, 35(5), 217-230.DOI:10.3103/S0884591319050027 ,
https://doi.org/10.3103/S0884591319050027
Part 3, 35(6), 271-285. DOI:10.3103/S0884591319060023
https://doi.org/10.3103/S0884591319060023
21. Chornogor L. F. (2021). Physics of geospace storms. Space Sci. Technol., 27(1), 3-77.
https://doi.org/10.15407/knit2021.01.003
22. Chernogor L. F. (2023). A Tropical Cyclone or Typhoon as an Element of the Earth-Atmosphere-Ionosphere-Magneto-sphere System: Theory, Simulations, and Observations. Remote Sensing, 15(20). id:4919.
https://doi.org/10.3390/rs15204919
23. Yampolski Yu. M., Zalizovski A. V., Litvinenko L. M., Lizunov G. V., Groves K., Moldwin M. (2004). Magnetic Field Variations in Antarctica and the Conjugate Region (New England) Stimulated by Cyclone Activity. Radio Phys. Radio Astron., 9(2), 130-152 [in Russian].
24. Astafyeva E., Maletckii B., Mikesell T. D., Munaibari E., Ravanelli M., Coisson P., Manta F., Rolland L. (2022). The 15 January 2022 Hunga Tonga eruption history as inferred from ionospheric observations. Geophys. Res. Lett., 49(10), e2022GL098827.
https://doi.org/10.1029/2022GL098827
25. Balachandran N. K., Donn W. L., Rind D. H. (1977). Concorde Sonic Booms as an Atmospheric Probe. Science, 197(4298), 47-49.
https://doi.org/10.1126/science.197.4298.47
26. Che I.-Y., Park J., Kim I., Kim T. S., Lee H.-I. (2014). Infrasound signals from the underground nuclear explosions of North Korea. Geophys. J. Int., 198(1), 495-503.
https://doi.org/10.1093/gji/ggu150
27. Chernogor L. F., Blaunstein N. (2014). Radiophysical and Geomagnetic Effects of Rocket Burn and Launch in the Near-the- Earth Environment. Boca Raton, London, New York: CRC Press. Taylor & Francis Group.
28. Chernogor L. F., Garmash K. P., Guo Q., Rozumenko V. T., Zheng Y., Luo Y. (2021). Supertyphoon Hagibis action in the ionosphere on 6-13 October 2019: Results from multi-frequency multiple path sounding at oblique incidence. Adv. Space Res., 67(8), 2439-2469.
https://doi.org/10.1016/j.asr.2021.01.038
29. Chou M.-Y., Lin C. C. H., Yue J., Chang L. C., Tsai H.-F., Chen C.-H. (2017). Medium-scale traveling ionospheric disturbances triggered by Super Typhoon Nepartak (2016). Geophys. Res. Lett., 44(15), 7569-7577.
https://doi.org/10.1002/2017GL073961
30. Chou M.-Y., Lin C. C. H., Shen M.-H., Yue J., Huba J. D., Chen C.-H. (2018). Ionospheric Disturbances Triggered by SpaceX Falcon Heavy. Geophys. Res. Lett., 45(13), 6334-6342.
https://doi.org/10.1029/2018GL078088
31. Chou M.-Y., Shen M.-H., Lin C. C. H., Yue J., Chen C.-H., Liu J.-Y., Lin J.-T. (2018). Gigantic Circular Shock Acoustic Waves in the Ionosphere Triggered by the Launch of FORMOSAT-5 Satellite. Space Weather, 16(2), 172-184.
https://doi.org/10.1002/2017SW001738
32. Ding F., Wan W., Mao T., Wang M., Ning B., Zhao B., Xiong, B. (2014). Ionospheric response to the shock and acoustic waves excited by the launch of the Shenzhou 10 spacecraft. Geophys. Res. Lett., 41(10), 3351-3358.
https://doi.org/10.1002/2014GL060107
33. Donn W. L., Ewing M. (1962). Atmospheric waves from nuclear explosions. J. Geophys. Res., 67(5), 1855-1866.
https://doi.org/10.1029/JZ067i005p01855
34. Donn W. L., Ewing M. (1962). Atmospheric Waves from Nuclear Explosions - Part II: The Soviet Test of 30 October 1961. J. Atmos. Sci., 19(3), 264-273.
https://doi.org/10.1175/1520-0469(1962)0192.0.CO;2
35. Donn W. L. (1978). Exploring the Atmosphere with Sonic Booms: Or How I Learned to Love the Concorde. Amer. Sci., 66(6), 724-733.
36. Donn W. L., Rind D. (1979). Monitoring Stratospheric Winds with Concorde-Generated Infrasound. J. Appl. Meteor., 18(7), 945-952.
https://doi.org/10.1175/1520-0450(1979)0182.0.CO;2
37. Farges T., Blanc E. (2010). Characteristics of infrasound from lightning and sprites near thunderstorm areas. J. Geophys. Res. Space Phys., 115(A6), A00E31.
https://doi.org/10.1029/2009JA014700
38. Farkas E. (1962). Transit of Pressure Waves through New Zealand from the Soviet 50 Megaton Bomb Explosion. Nature, 193(4817), 765-766.
https://doi.org/10.1038/193765a0
39. Garcés M., Caron P., Hetzer C., Le Pichon A., Bass H., Drob D., Bhattacharyya J. (2005). Deep infrasound radiated by the Sumatra earthquake and tsunami. Eos, 86(35), 317-320.
https://doi.org/10.1029/2005EO350002
40. Gardiner G. W. (1962). Effects of the nuclear explosion of 30 October 1961. J. Atmos. Terr. Phys., 24(11), 990-993.
https://doi.org/10.1016/0021-9169(62)90146-0
41. Gibbons S. J., Ringdal F., Kv rna T. (2007). Joint seismic-infrasonic processing of recordings from a repeating source of atmospheric explosions. J. Acoust. Soc. Amer., 122(5), EL158. DOI:10.1121/1.2784533
https://doi.org/10.1121/1.2784533
42. Guo Q., Chernogor L. F., Garmash K. P., Rozumenko V. T., Zheng, Yu. (2019). Dynamical processes in the ionosphere following the moderate earthquake in Japan on 7 July 2018. J. Atmos. and Sol.-Terr. Phys., 186, 88-103.
https://doi.org/10.1016/j.jastp.2019.02.003
43. Guo Q., Chernogor L. F., Garmash K. P., Rozumenko V. T., Zheng Y. (2020). Radio Monitoring of Dynamic Processes in the Ionosphere Over China During the Partial Solar Eclipse of 11 August 2018. Radio Sci., 55(2), e2019RS006866.
https://doi.org/10.1029/2019RS006866
44. Infrasound monitoring for atmospheric studies. (2019). Eds A. Le Pichon, E. Blanc, A. Hauchecorne. Switzerland: Springer Int. Publ. 1167 p.
https://doi.org/10.1007/978-3-319-75140-5
45. Kakinami Y., Yamamoto M., Chen C.-H., Watanabe S., Lin C., Liu J.-Y., Habu, H., (2013). Ionospheric disturbances induced by a missile launched from North Korea on 12 December 2012. J. Geophys. Res. Space Phys., 118(8), 5184-5189.
https://doi.org/10.1002/jgra.50508
46. Kulichkov S. N., Chunchuzov I. P., Popov O. E., Gorchakov G. I., Mishenin A. A., Perepelkin V. G., Bush G. A., Skorokhod A. I., Vinogradov Yu. A., Semutnikova E. G., epic J., Medvedev I. P., Gushchin R. A., Kopeikin V. M., Belikov I. B., Gubanova D. P., Karpov A. V., Tikhonov A. V. (2022). Acoustic-Gravity Lamb Waves from the Eruption of the Hunga-Tonga-Hunga-Hapai Volcano, Its Energy Release and Impact on Aerosol Concentrations and Tsunami. Pure and Appl. Geophys., 179, 1533-1548.
https://doi.org/10.1007/s00024-022-03046-4
47. Le Pichon A., Herry P., Mialle P., Vergoz J., Brachet N., Garc s M., Drob D., Ceranna L. (2005). Infrasound associated with 2004-2005 large Sumatra earthquakes and tsunami. Geophys. Res. Lett., 32(19), L19802.
https://doi.org/10.1029/2005GL023893
48. Le Pichon A., Pilger C., Ceranna L., Marchetti E., Lacanna G., Souty V., Vergoz J., Listowski C., Hernandez B., MazetRoux G., Dupont A., Hereil P. (2021). Using dense seismo-acoustic network to provide timely warning of the 2019 paroxysmal Stromboli eruptions. Scientific reports, 11, id:14464.
https://doi.org/10.1038/s41598-021-93942-x
49. Li Y. Q., Jacobson A. R., Carlos R. C., Massey R. S., Taranenko Y. N., Wu G. (1994). The blast wave of the Shuttle plume at ionospheric heights. Geophys. Res. Lett., 21(24), 2737-2740.
https://doi.org/10.1029/94GL02548
50. Lin C. H., Lin J. T., Chen C. H., Liu J. Y., Sun Y. Y., Kakinami Y., Matsumura M., Chen W. H., Liu H., Rau R. J. (2014). Ionospheric shock waves triggered by rockets. Ann. Geophys. 32(9), 1145-1152.
https://doi.org/10.5194/angeo-32-1145-2014
51. Lin C. C. H., Shen M.-H., Chou M.-Y., Chen C.-H., Yue J., Chen P.-C., Matsumura M. (2017). Concentric traveling ionospheric disturbances triggered by the launch of a SpaceX Falcon 9 rocket. Geophys. Res. Lett., 44(15), 75787586.
https://doi.org/10.1002/2017GL074192
52. Luo Y., Chernogor L. F. (2020). Electromagnetic effects of acoustic and atmospheric gravity waves in the near-earth atmosphere. Radio Phys. and Radio Astron., 25(4), 290-307.
https://doi.org/10.15407/rpra25.04.290
53. Luo Y., Chernogor L. F., Garmash K. P., Guo Q., Rozumenko V. T., Zheng Yu. (2021). Dynamic processes in the magnetic field and in the ionosphere during the 30 August - 2 September, 2019 geospace storm. Annales Geophysicae, 39(4).
https://doi.org/10.5194/angeo-39-657-2021
54. Luo Y., Chernogor L. F., Garmash K. P. (2022). Magneto-Ionospheric Effects of the Geospace Storm of March 21-23, 2017. Kinematics and Physics of Celestial Bodies, 38(4), 210-229.
https://doi.org/10.3103/S0884591322040055
55. Mccrory R. A. (1967). Atmospheric Pressure Waves from Nuclear Explosions. J. Atmos. Sci., 24(4), 443-447. DOI:10.1175/1520-0469(1967)024%3C0443:APWFNE%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1967)0242.0.CO;2
56. Mutschlecner J. P., Whitaker R. W. (2005). Infrasound from earthquakes. J. Geophys. Res. Atmos., 110(D1). D01108.
https://doi.org/10.1029/2004JD005067
57. Nishioka M., Tsugawa T., Kubota M., Ishii M. (2013). Concentric waves and short-period oscillations observed in the ionosphere after the 2013 Moore EF5 tornado. Geophys. Res. Lett. 40(21), 5581-5586.
https://doi.org/10.1002/2013GL057963
58. Panasenko S. V., Otsuka Y., Van de Kamp M., Chernogor L. F., Shinbori A., Tsugawa T., Nishioka M. (2019). Observation and characterization of traveling ionospheric disturbances induced by solar eclipse of 20 March 2015 using incoherent scatter radars and GPS networks. J. Atmos. and Sol.-Terr. Phys., 191, 105051.
https://doi.org/10.1016/j.jastp.2019.05.015
59. Rose G., Oksman J., Kataja E. (1961). Round-the-World Sound Waves produced by the Nuclear Explosion on October 30, 1961, and their Effect on the Ionosphere at Sodankyl . Nature, 192(4808), 1173-1174.
https://doi.org/10.1038/1921173a0
60. Row R. V. (1967). Acoustic-gravity waves in the upper atmosphere due to a nuclear detonation and an earthquake. J. Geophys. Res., 72(5), 1599-1610.
https://doi.org/10.1029/JZ072i005p01599
61. The Encyclopedia of Volcanoes (2015). (2th ed.). Academic Press, 1421 p.
https://doi.org/10.1016/B978-0-12-385938-9.00063-8
62. Watt A. D. (1967). International series of monographs in electromagnetic waves. New York: Pergamon, 724 p.
63. Wexler H., Hass W. A. (1962). Global atmospheric pressure effects of the October 30, 1961, explosion. J. Geophys. Res., 67(10), 3875-3887.
https://doi.org/10.1029/JZ067i010p03875
64. Yuen D. A., Scruggs M. A., Spera F. J., Zheng Y., Hu H., McNutt S. R., Thompson G., Mandli K., Keller B. R., Wei S. S., Peng Z., Zhou Z., Mulargia F., Tanioka Y. (2022). Under the surface: Pressure-induced planetary-scale waves, volcanic lightning, and gaseous clouds caused by the submarine eruption of Hunga Tonga-Hunga Ha'apai volcano. Earthquake Res. Adv., 2(3), 100134.
https://doi.org/10.1016/j.eqrea.2022.100134
65. Zheng Y., Chernogor L. F., Garmash K. P., Guo Q., Rozumenko V. T., Luo Y. (2022). Disturbances in the ionosphere and distortion of radio wave characteristics that accompanied the super typhoon Lekima event of 4-12 August 2019. J. Geophys. Res.: Space Phys., 127, e2022JA030553.
https://doi.org/10.1029/2022JA030553