Modelling of spatial temporal variations of physical process parameters in the ionospheric plasma over Ukraine during the maximum [hase of the 24-th solar activity cycle (2012-2015)

1Kolodyazhnyi, VV, 2Lyashenko, MV, 2Emelyanov, LYa., 3Dziubanov, DA
1Institute of Ionosphere of the NAS of Ukraine and MES of Ukraine, Kharkiv, Ukraine; National Technical University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine
2Institute of Ionosphere of the NAS of Ukraine and MES of Ukraine, Kharkiv, Ukraine
3National Technical University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine
Space Sci. & Technol. 2024, 30 ;(1):44-65
https://doi.org/10.15407/knit2024.01.044
Publication Language: Ukrainian
Abstract: 
The object of research is physical processes occurring in the ionospheric plasma. The subject of research: spatial-temporal variations of the main parameters of the ionospheric plasma, which were obtained using incoherent scatter radar. Research methods include the ground-based radiophysical method of incoherent scatter of radio waves, statistical analysis of observation results, and semi-empirical modeling of parameters of dynamic and thermal processes.
         Modeling and analysis of spatial-temporal variations of the dynamic and thermal processes parameters in the ionosphere during the maximum phase of the 24-th solar activity cycle (2012–2015) has been performed using experimental data obtained by the Kharkiv incoherent scatter radar. For the periods of the equinoxes and solstices, diurnal dependences of process parameters in the ionospheric plasma at altitudes from 210 to 450 km were constructed. The values of plasma transfer velocity due to ambipolar diffusion, the density of the full plasma flux and the flux of charged particles due to ambipolar diffusion were determined. The values of the energy supplied to the electron gas, the density of the heat flux transferred by electrons from the plasmasphere to the ionosphere, as well as the velocity of the equivalent neutral wind and the meridional component of the neutral wind velocity were calculated.
                 It was established that for the considered periods, the effects of space weather variations and geomagnetic activity were significantly manifested in variations of the plasma flux density due to ambipolar diffusion, the density of the full plasma flux, as well as the energy supplied to electrons per unit time. Quantitative and qualitative characteristics of these parameters were typical, but changed significantly (by 2…3 times) in some cases even with a slight increase in geomagnetic activity.
Keywords: dynamic and thermal processes in the ionosphere, ionosphere, ionospheric modeling, radiophysical methods of geospace research, solar activity
References: 

1. Dzyubanov D. A., Lyashenko M. V., Chernogor L. F. (2008). Investigation and modeling of ionospheric plasma parameter variations during minimum period of the 23-th solar activity cycle. Space Science and Technology, 14, № 1, 44-56. doi: 10.15407/knit2008.01.044.
https://doi.org/10.15407/knit2008.01.044

2. Iskra D. A., Kolodyazhnyi V. V., Lyashenko M. V. (2019). Development of the CERIM IION regional ionosphere model as part of the creation of the space weather forecast service. Theoretical and applied aspects of radio engineering, instrument making and computer technologies. Proceedings of the IV International Scientific and Technical Conference, June 20-21, 2019: a collection of abstracts. Ternopil: Individual Entrepreneur Palyanytsya V A, 15-18.

3. Kolodyazhnyi V. V., Lyashenko M. V., Emelyanov L. Ya., Dziubanov D. A. Modeling of spatial-temporal variations of dynamic and thermal process parameters in geospace over Ukraine during the minimum of 24-th cycle of solar activity (2009, 2019). Space Science and Technology. 2023. 29, № 1 (140), 15-35. https://doi.org/10.15407/knit2023.01.015.
https://doi.org/10.15407/knit2023.01.015

4. Lyashenko M. V., Pulyaev V. A., Chernogor L. F. (2006). Diurnal and seasonal variations of ionospheric plasma parameters during rise solar activity period. Space Science and Technology, 12, № 5/6, 58-68. doi: 10.15407/knit2006.05.058.
https://doi.org/10.15407/knit2006.05.058

5. Lyashenko M. V., Sklyarov I. B., Chernogor L. F., Chernyak Yu. V. (2006). Diurnal and seasonal variations of ionospheric plasma parameters on solar activity abatement. Space Science and Technology, 12, № 2/3, 45-58. doi: 10.15407/knit2006.02.045.
https://doi.org/10.15407/knit2006.02.045

6. Lyashenko M. V., Chernogor L. F., Chernyak Yu. V. (2006). Diurnal and seasonal variations of ionospheric plasma parameters at maximum solar activity period. Space Science and Technology, 12, № 4, 56-70. doi: 10.15407/knit2006.04.056.
https://doi.org/10.15407/knit2006.04.056

7. Chernogor L. F., Domnin I. F. (2014). Physics of Geospace Storms. Kharkiv: V. N. Karazin Kharkiv National University Publ., 407 p. [in Russian].

8. Buonsanto M. J., Holt J. M. (1995). Measurements of gradients in ionospheric parameters with a new nine-position experiment at Millstone Hill. J. Atmospheric and Terrestrial Phys., 57, 705-717.
https://doi.org/10.1016/0021-9169(94)00047-R

9. Cai, Y., Yue, X., Wang, W., Zhang, S., Liu, H., Lei, J., et al. (2022). Ionospheric topside diffusive flux and the formation of summer nighttime ionospheric electron density enhancement over Millstone Hill. Geophysical Research Letters. 49 (4). e2021GL097651.
https://doi.org/10.1029/2021GL097651

10. Chernogor L. F., Domnin I. F., Emelyanov L. Ya., Lyashenko M. V. (2019). Physical processes in the ionosphere during the solar eclipse on March 20, 2015 over Kharkiv, Ukraine (49.6° N, 36.3° E). J. Atmos. Sol.-Terr. Phys., 182, 1-9. https://doi.org/10.1016/j.jastp.2018.10.016.
https://doi.org/10.1016/j.jastp.2018.10.016

11. Chernogor L., Domnin I., Lyashenko M. (2010). Development of Central Europe Regional Ionospheric Model (CERIM IION) for Space Weather Forecasting. EGU General Assembly 2010 (Vienna, Austria, 2-7 May 2010). Geophys. Res. Abstract, 12, EGU2010-316-2.

12. Domnin I. F., Chepurnyy Ya. M., Emelyanov L. Ya., Chernyaev S. V., Kononenko A. F., Kotov D. V., Bogomaz O. V., Iskra D. A. (2014). Kharkiv incoherent scatter facility. Bull. NTU "KhPI". Ser. Radiophysics and ionosphere, № 47, (1089), 28-42. http://nbuv.gov.ua/UJRN/vcpiri_2014_47_7.

13. Emel'yanov L. Ya., Lyashenko M. V., Chernogor L. F., Domnin I. F. (2018). Motion of ionospheric plasma: results of observation above Kharkiv in solar cycle 24. Geomagnetism and Aeronomy, 58, № 4, 533-547. doi.org/10.1134/S001679321802007X.
https://doi.org/10.1134/S001679321802007X

14. Emelyanov, L. Ya., Katsko, S. V., Lyashenko, M. V., Chernogor, L. F. (2023). Ionosphere response to geospace storm on 25 September 2016 over Kharkiv (Ukraine). Adv. Space Res., 71, № 8, 3323-3345. https://doi.org/10.1016/j.asr.2023.02.004.
https://doi.org/10.1016/j.asr.2023.02.004

15. Evans J. V. (1969). Theory and practice of ionosphere study by Thomson scatter radar. Proc. IEEE, 57, № 4, 496-530.
https://doi.org/10.1109/PROC.1969.7005

16. Gordon W. E. (1958). Incoherent scatter of radio waves by free electrons with applications to space exploration by Radar. Proc. IRE, 46, 1824-1829.
https://doi.org/10.1109/JRPROC.1958.286852

17. Lei, J., Roble, R. G., Wang, W., Emery, B. A., and Zhang, S.-R. (2007). Electron temperature climatology at Millstone Hill and Arecibo. J. Geophys. Res., 112, A02302.
https://doi.org/10.1029/2006JA012041

18. Li, Q., Hao, Y., Zhang, D., & Xiao, Z. (2018). Nighttime enhancements in the midlatitude ionosphere and their relation to the plasmasphere. Journal of Geophysical Research: Space Physics. 123 (9), 7686-7696. https://doi.org/10.1029/2018ja025422.
https://doi.org/10.1029/2018JA025422

19. Mathews, J. D. A short history of geophysical radar at Arecibo Observatory. Hist. Geo Space. Sci., 4, 19-33.
https://doi.org/10.5194/hgss-4-19-2013

20. Picone J. M., Hedin A. E., Drob D. P., Aikin A. C. (2002). NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res., 107, № A12, 1-16.
https://doi.org/10.1029/2002JA009430

21. Richards P. G. (2001). Seasonal and solar cycle variations of the ionospheric peak electron density: Comparison of measurement and models. J. Geophys. Res., 106, № A7, 12803-12819.
https://doi.org/10.1029/2000JA000365

22. Rishbeth H., Sedgemore-Schulthess K. J. F., Ulich T. (2000). Annual and semiannual variations in the ionospheric F2-layer: II. Physical discussion. Ann. Geophysicae, 18, 945-956. doi.org/10.1007/s00585-000-0945-6.
https://doi.org/10.1007/s00585-000-0945-6

23. Salah J. E., Evans J., Wand R. N. (1974). Seasonal variations in the thermosphere above Millstone Hill. Radio Sci., 9, № 2, 231-238.
https://doi.org/10.1029/RS009i002p00231

24. Schunk R. W., Nagy A. F. (2000). Ionospheres: Physics, Plasma Physics, and Chemistry. Cambridge, Atmospheric and Space Sci. Ser., 555 p.
https://doi.org/10.1017/CBO9780511551772

25. Sethi N. K., Dabas R. S., Vohra V. K. (2004). Diurnal and seasonal variations of hmF2 deduced from digital ionosonde over New Delhi and its comparison with IRI 2001. Ann. Geophysicae, 22, 453-458.
https://doi.org/10.5194/angeo-22-453-2004

26. Woodman, R. F., Farley, D. T., Balsley, B. B., and Milla, M. A. The early history of the Jicamarca Radio Observatory and the incoherent scatter technique. Hist. Geo Space. Sci., 10, 245-266.
https://doi.org/10.5194/hgss-10-245-2019

27. Wu, Q., Sheng, C., Wang, W., Noto, J., Kerr, R., McCarthy, M., et al. (2019). The midlatitude thermospheric dynamics from an interhemispheric perspective. Journal of Geophysical Research: Space Physics. 124 (10), 7971-7983.
https://doi.org/10.1029/2019JA026967

28. Yemelyanov L. Ya. (2015). Radio physical observations of plasma drift velocities in the ionosphere near the maximum of solar cycle 24. Telecommunications and Radio Engineering, 74, № 20, 1841-1855.
https://doi.org/10.1615/TelecomRadEng.v74.i20.60

29. Yue, X. A., Wan, W. X., Xiao, H., Zeng, L. Q., Ke, C. H., Ning, B. Q., et al. (2020). Preliminary experimental results by the prototype of Sanya Incoherent Scatter Radar. Earth Planet. Phys., 4(6), 579-587. doi: 10.26464/epp2020063.
https://doi.org/10.26464/epp2020063

30. Zang S., Holt J. M., Zalucha A. M. (2004). Midlatitude ionospheric plasma temperature climatology and empirical model based on Saint Santin incoherent scatter radar data from 1966 to 1987. J. Geophys. Res., 109, № A11, 1-9.
https://doi.org/10.1029/2004JA010709