# Microwave waveguide polarizer for satellite communication antennas with circular polarization

 1Piltyay, SІ, 1Bulashenko, АV, 1Polishchuk, АV, 2Bulashenko, ОV1National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine2Ivan Kozhedub Shostka Professional College of Sumy State University, Sumy, Ukraine Space Sci. & Technol. 2022, 28 ;(3):04-04 https://doi.org/10.15407/knit2022.03.043 Publication Language: Ukrainian Abstract:  The volumes of information transmitted in modern satellite telecommunication systems are constantly increasing. Antennas with signal polarization processing, which is performed by polarizers, are the fundamental elements of such systems. Therefore, the development of methods for the analysis of new polarizers is an important problem. From a technological point of view, polarizers based on waveguides with irises are the simplest. Analysis and optimization of electromagnetic characteristics of a polarizer based on a square waveguide with irises are the goals of the presented research.       To solve this optimization problem, we have created a new mathematical model, which allows investigating the influence of the design parameters of the polarizer on its electromagnetic characteristics. A mathematical model of the waveguide polarizer with irises was created by the method of decomposition using wave transmission and scattering matrices. Besides, the new mathematical model takes into account the thickness of the irises using their equivalent T- and П-shaped substitution circuits. The general wave scattering matrix is the basis of a new mathematical model of a waveguide polarizer. This matrix was determined using the theory of microwave circuits. The main characteristics of the waveguide polarizer were determined through the elements of this matrix. Here, we perform the optimization of the polarizer characteristics in the Ku-band 10.7–12.8 GHz.       The developed new mathematical model of a waveguide polarizer with irises makes it possible to take into account the heights of the irises, distances between them and their thickness. The new mathematical model determines the electromagnetic characteristics of the polarizer in a simpler and faster way compared to the finite integration technique, which is often used for the analysis of microwave devices for various purposes. Keywords: axial ratio, crosspolar discrimination, diaphragm, differential phase shift, iris, polarizer, scattering matrix, transfer matrix, voltage standing wave ratio, waveguide
References:
1. Addamo G., Peverini O. A., Manfredi D., Calignano F., Paonessa F., Virone G., Tascone R., Dassano G. (2018). Additive manufacturing of Ka-band dual-polarization waveguide components. IEEE Transactions on Microwave Theory and Technique, 66, No. 8, 3589—3596.
https://doi.org/10.1109/TMTT.2018.2854187.
2. Agnihotri I., Sharma S. K. (2019). Design of a compact 3D metal printed Ka-band waveguide polarizer. IEEE Antennas and Wireless Propagation Letters, 18, No. 12, 2726—2730.
https://doi.org/10.1109/LAWP.2019.2950312.
3. Amari S. (2000). Synthesis of cross-coupled resonator filters using an analytical gradient-based optimization technique. IEEE Transactions on Microwave Theory and Techniques, 48, No. 9, 1559—1564.
https://doi.org/10.1109/22.869008.
4. Amari S., Bornemann J., Vahldieck R. (1996). Application of a coupled-integral-equations technique to ridged waveguides. IEEE Transactions on Microwave Theory and Techniques, 44, No. 12, 2256—2264.
https://doi.org/10.1109/22.556454.
5. Arnieri E., Greco F., Boccia L., Amendola G. (2020). A SIW-based polarization rotator with an application to linear-tocircular dual-band polarizers at K-/Ka-band. IEEE Transactions on Antennas and Propagation, 68, No. 5, 3730—3738.
https://doi.org/10.1109/TAP.2020.2963901.
6. Bulashenko А. V. (2020). Evaluation of D2D communications in 5G networks. Visnyk NTUU KPI. Ser. Radiotekhnika Radioaparatobuduvannia, 81, 21—29 [in Ukrainian].
7. Bulashenko А. V. (2021). Combined criterion for the choice of routing based on D2D technology. Radio Electronics, Computer Sci., Control, 1, 7—13 [in Ukrainian].
https://doi.org/10.15588/1607-3274-2021-1-1.
8. Bulashenko A. V., Piltyay S. I. (2020). Equivalent microwave circuit technique for waveguide iris polarizers development. Visnyk NTUU KPI. Ser. Radiotekhnika Radioaparatobuduvannia, 83, 17—28.
9. Bulashenko A., Piltyay S., Dikhtyaruk I., Bulashenko O. (2022). FDTD and wave matrix simulation of adjustable DBSband waeguide polarizer. J. Electromagnetic Waves and Applications, 36, № 6, 875—891.
https://doi.org/10.1080/09205071.2021.1995897.
10. Bulashenko А. V., Piltyay S. I., Kalinichenko Y. I., Zabegalov I. V. (2021). Waveguide polarizer for radar and satellite systems. Visnyk NTUU KPI. Ser. Radiotekhnika Radioaparatobuduvannia, 86, 5—13 [in Russian].
11. Chittora A., Yadav S. V. (2020). A compact circular waveguide polarizer with higher order mode excitation. Proceedings of the IEEE International Conference on Electronics, Computing and Communication Technologies (2—4 July 2020), Bangalore, India, 1—4.
http://doi.org/10.1109/CONECCT50063.2020.9198499.
12. Collin R. E. (2001). Fondations for microwave engineering. New Jersey, USA: John Wiley and Sons, 945 p.
13. Deutschmann B., Jacob A.F. (2020). Broadband septum polarizer with triangular common port. IEEE Transactions on Microwave Theory and Techniques, 68, No. 2, 693—700.
https://doi.org/10.1109/TMTT.2019.2951138.
14. Dubrovka F., Martunyuk S., Dubrovka R., Lytvyn M., Lytvyn S., Ovsianyk Yu., Piltyay S., Sushko O., Zakharchenko O. (2020). Circularly polarised X-band H11- and H21-modes antenna feed for monopulse autotracking ground station. Proceedings of IEEE Ukrainian Microwave Week, (21—25 September 2020), Kharkiv, 196—202.
15. Dubrovka F. F., Piltyay S. I. (2011). A high performance ultrawideband orthomode transducer and a dual-polarized quadridged
horn antenna based on it. Proceedings of VIII IEEE International Conference on Antenna Theory and Techniques (20—23 September 2011), Kyiv, 176—178. http://doi.org/10.1109/ICATT.2011.6170737.
16. Dubrovka F. F., Piltyay S. I. (2012). Eigenmodes of sectoral coaxial ridged waveguides. Radioelectronics and Communications Systems, 55, No. 6, 239—247. http://doi.org/10.3103/S0735272712060015.
17. Dubrovka F. F., Piltyay S. I. (2012). Electrodynamics boundary problem solution for sectoral coaxial ridged waveguide by integral equation technique. Radioelectronics and Communications Systems, 55, No. 5, 191—203. http://doi.org/10.3103/S0735272712050019.
18. Dubrovka F. F., Piltyay S. I. (2012). Prediction of eigenmodes cutoff frequencies of sectoral coaxial ridged waveguides. Proceedings of International Conference on Modern Problem of Radio Engineering, Telecommunications and Computer Science, Lviv–Slavske, Ukraine, 191.
19. Dubrovka F. F., Piltyay S. I. (2013). A novel wideband coaxial polarizer. Proceedings of IX International Conference on Antenna Theory and Techniques (16—20 September 2013), Odessa, 473—474. https://doi.org/10.1109/ICATT.2013.6650816.
20. Dubrovka F. F., Piltyay S. I. (2013). Eigenmodes analysis of sectoral coaxial ridged waveguides by transverse field-matching technique. Part 2. Results, Visnyk NTUU KPI Seriia — Radioteknika Radioaparatobuduvannia, 55, 13—23. http://doi.org/10.20535/RADAP.2013.55.13-23.
21. Dubrovka F.F., Piltyay S.I. (2014). Boundary problem solution for eigenmodes in coaxial quad-ridged waveguides. Information and Telecommunication Sciences, 5, No. 1, 48—61. http://nbuv.gov.ua/UJRN/Telnau_2014_1_1_10.
22. Dubrovka F. F., Piltyay S. I. (2014). Eigenmodes of coaxial quad-ridged waveguides. Theory, Radioelectronics and Communications Systems, 57, No. 1, 1—30. https://doi.org/10.3103/S0735272714010014.
23. Dubrovka F. F., Piltyay S. I. (2014). Eigenmodes of coaxial quad-ridged waveguides. Numerical results. Radioelectronics and Comm. Systems, 57, No. 2, 59—69. https://doi.org/10.3103/S0735272714020010.
24. Dubrovka F. F., Piltyay S. I. (2017). Novel high performance coherent dual-wideband orthomode transducer for coaxial horn feeds. Proceedings of XI IEEE nternational Conference on Antenna Theory and Techniques (24—27 May 2017), Kyiv, 277—280. https://doi.org/10.1109/ICATT.2017.7972642.
25. Dubrovka F. F., Piltyay S. I., Dubrovka R R., Lytvyn M. M., Lytvyn S. M. (2020). Optimum septum polarizer design for various fractional bandwidths. Radioelectron. Commun. Syst., 63, No. 1, 15—23. http://doi.org/10.3103/S0735272720010021.
26. Dubrovka F., Piltyay S., Sushko O., Dubrovka R., Lytvyn M., Lytvyn S. (2020). Compact X-band stepped-thickness septum polarizer. Proceedings of IEEE Ukrainian Microwave Week (21—25 September 2020). Kharkiv, 135—138. http://doi.g/10.1109/UkrMW49653.2020.9252583.
27. Eleftheriades G. V., Omar A. S., Katehi L. P. B., Rebeiz G. M. (1994). Some important properties of waveguide junction generalized scattering matrices in the context of the mode matching technique. IEEE Transactions on Microwave Theory and Techniques, 42, No. 10, 1896—1903. http://doi.org/10.1109/22.320771.
28. Feldshtein A. L., Yavich L. R., Smirnov V. P. (1967). Spravochnik po jelementam volnovodnoj tehniki. Moscow: Sov. radio, 652 p. [in Russian].
29. Feng B., Lai J., Chung K. L., Chen T.-Y., Liu Y., Sim C.-Y.-D. (2020). A compact wideband circularly polarized magnetoelectric dipole antenna array for 5G millimeter-wave applications. IEEE Transactions on Antennas and Propagation, 68, No 9, 6838—6843. http://doi.org/10.1109/TAP.2020.2980368.
30. Gao S., Luo Q., Zhu F. (2014). Circularly Polarized Antennas. Chichester, USA: John Wiley and Sons, 322 p.
31. Haas D., Marek A., Thumm M., Jelonnek J., Jirousek M., Peichl M. (2020). Broadband polarizer miter bend for highpower radar applications. Proceeding of the German Microwave Conference (9—11 March 2020). Germany, Cottbus.
32. Kirilenko A. A., Kulik D. Yu., Prikolotin S. A., Rud L. A., Steshenko S. A. (2013). Design and optimization of broadband ridged coaxial waveguide polarizers. Proceedings of International Kharkov Symposium on Physics and Engineering of Microwaves Millimeter and Submillimeter Waves (23—28 June 2013). Kharkov, 445—447. http://doi.org/10.1109/MSMW.2013.6622082.
33. Kirilenko A. A., Kulik D. Yu., Prikolotin S. A., Rud L. A., Steshenko S. A. (2013). Stepped approximation technique for designing coaxial waveguide polarizers. Proceedings of IX International Conference on Antenna Theory and Techniques (16—20 September 2013), Odessa, 470—472. https://doi.org/10.1109/ICATT.2013.6650815.
34. Kirilenko A. A., Kulik D. Yu., Rud L. A., Tkachenko V. I., Herscovici M. (2004). Compact septum polarizers with a circular output waveguide, Proceedings of V IEEE International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter, and Submillimeter Waves (21—26 June 2004). Kharkov, 686—688. http://doi.org/10.1109/MSMW.2004.1346088.
35. Kirilenko A., Mospan L., Tkachenko V. (2002). Capacitive iris bandpass filters with spurious harmonic modes suppression. Proceedings of International Conference on Mathematical Methods in Electromagnetic Theory (10—13 September 2002). Kyiv, 284—287. http://doi.org/10.1109/MMET.2002.1106997.
36. Kirilenko A., Rud L., Tkachenko V., Kulik D. (2002). Evanescent-mode ridged waveguide bandpass filters with improved performance. IEEE Transactions on Microwave Theory and Techniques, 50, No. 5, 1324—1327. http://doi.org/10.1109/22.9991468.
37. Kirilenko A. A., Senkevich S. L., Steshenko S. O. (2015). Application of the generalized scattering matrix technique for the dispersion analysis of 3D slow-wave structures. Telecommunications and Radio Engineering, 74, No. 17, 1497—1511. http://doi.org/10.1615/TelecomRadEng.v74.i17.10.
38. Kirilenko A. A., Steshenko S. O., Derkach V. N., Ostrizhnyi Y. M. (2018). Comparative analysis of tunable compact rotators. J. Electromagnetic Waves and Applications Microwaves Antennas and Propagatio, 33, 304—319. http://doi.org/10.1080/09205071.2018.1550443.
39. Kirilenko A. A., Steshenko S. O., Derkach V. N., Ostryzhnyi Y. M. (2019). A tunable compact polarizer in a circular waveguide. IEEE Transactions on Microwave Theory and Techniques, 67, No. 2, 592—596. http://doi.org/10.1109/TMTT.2018.2881089.
40. Kolmakova N., Perov A., Derkach V., Kirilenko A. (2016). Polarization plane rotation by arbitrary angle using D4 symmetrical structures. IEEE Transactions on Microwave Theory and Techniques, 64, No. 2, 429—435. http://doi.org/10.1109/TMTT.2016.2509966.
41. Kulik D. Yu., Mospan L. P., Perov A. O., Kolmakova N. G. (2016). Compact-size polarization rotators on the basis of irises with rectangular slots. Telecommunications and Radio Engineering, 75, No. 1, 1—9. http://doi.org/10.1615/TelecomRadEng.v75.i1.10.
42. Kulik D. Yu., Steshenko S. A., Kirilenko A. A. (2017). Compact polarization plane rotator for arbitrary angle. Proceedings of XI IEEE International Conference on Antenna Theory and Techniques (24—27 May 2017). Kyiv, 273—276. http://doi.org/10.1109/ICATT.2017.7972641.
43. Li A., Luk K.-M. (2019). Millimeter-wave dual linearly polarized endfire antenna fed by 180 hybrid coupler. IEEE Antennas and Wireless Propagation Letters, 18, No. 7, 1390—1394. https://doi.org/10.1109/LAWP.2019.2917660.
44. Lyu Y.-P., Zhu L., Cheng C.-H. (2017). Proposal and synthesis design of differential phase shifters with filtering function. IEEE Transactions on Microwave Theory and Techniques, 65, No. 8, 2906—2917. http://doi.org/10.1109/TMTT.2017.2673819.
45. Marcuvitz N. (1986). Waveguide handbook. USA, Short Run Press Ltd., 446 p.
46. Mishra G., Sharma S.K., Chieh J.-C. (2019). A circular polarized feed horn with inbuilt polarizer for offset reflector antenna for W-band CubeSat applications. IEEE Transactions on Antennas and Propagation, 67, No. 3, 1904—1909. http://doi.org/10.1109/TAP.2018.2886704.
47. Mospan L. P., Kirilenko A. A., Kulik D. Yu., Prikolotin S. A. (2014). Spectral properties of a rectangular wave guiding unit involving a pair of rectangular posts of equal heights. Telecommunications and Radio Engineering, 73, No. 1, 1—17. http://doi.org/10.1615/TelecomRadEng.v73.i1.10.
48. Omelianenko M. Yu., Romanenko Т. V. (2020). E-plane waveguide bandpass filters with wide stopband. Visnyk NTUU KPI. Ser. Radioteknika Radioaparatobuduvannia, 80, 5—13 [in Russian]. http://doi.org/10.20535/RADAP.2020.80.5-13.
49. Piltyay S. I. (2009). Radiation of the open end of a thin-walled circular waveguide at co- and cross polarization. Visnyk NTUU KPI. Ser. Radioteknika Radioaparatobuduvannia, 39, 70—76 (in Ukrainian). https://doi.org/10.20535/RADAP.2009.39.70-76.
50. Piltyay S. I. (2012). Numerically effective basis functions in integral equation technique for sectoral coaxial ridged waveguides. Proceedings of International Conference on Mathematical Methods in Electromagnetic Theory (28—30 August 2012), Kyiv, 492—495. http://doi.org/10.1109/MMET.2012.6331195.
51. Piltyay S. I. (2014). Enhanced C-band coaxial orthomode transducer, Visnik NTUU KPI Seriia – Radiotekhnika, Radioaparatobuduvannia, 58, 27—34. https://doi.org/10.20535/RADAP.2014.58.27-34
52. Piltyay S. I. (2017). High performance extended C-band 3.4—4.8 GHz dual circular polarization feed system, Proceedings of XI IEEE International Conference on Antenna Theory and Techniques (24—27 May 2017). Kyiv, 284—287. http://doi.org/10.1109/ICATT.2017.7972644.
53. Piltyay S. (2021). Square waveguide polarizer with diagonally located irises for Ka-band antenna systems. Advanced Electromagnetics, 10, No. 3, 31—38. http://doi.org/10.7716/aem.v10i3.1780.
54. Piltyay S. I., Bulashenko A. V., Bykovskyi O. V., Bulashenko O. V. (2022). Estimation of FEM and FDTD methods for simulation of electromagnetic characteristics of polarization transforming devices with diaphragms. Radio Electronics, Computer Sci., Control, 4, 34—48 [in Russian]. https://doi.org/10.15588/1607-3274-2021-4-4.
55. Piltyay S.I., Bulashenko A.V., Herhil Y.Y. (2021). Numerical performance of FEM and FDTD methods for the simulation of waveguide polarizers. Visnyk NTUU KPI Seriia – Radioteknika Radioaparatobuduvannia, 84, 11—21. http://doi.org/10.20535/RADAP.2021.84.11-21.
56. Piltyay S. I., Bulashenko A. V., Kalinichenko Ye. I. (2022). Analysis of waveguide polarizers using equivalent network and finite elements methods. J. Electromagnetic Waves and Applications, 36, № 12, 1633—1655. http://doi.org/10.1080/09205071.2022.2037471.
57. Piltyay S., Bulashenko A., Shuliak V., Bulashenko O. (2021). Electromagnetic simulation of new tunable guide polarizers with diaphragms and pins. Advanced Electromagnetics, 10, No. 3, 24—30. http://doi.org/10.7716/aem.v10i3.1737.
58. Piltyay S., Bulashenko A., Shuliak V. (2021). Development and optimization of microwave guide polarizers using equivalent network method. J. Electromagnetic Waves and Applications, 36, № 5, 682—705. http://doi.org/10.1080/09205071.2021.1980913.
59. Piltyay S., Bulashenko A., Shuliak V., Bulashenko O. (2021). Comparative analysis of compact satellite polarizers based on a guide with diaphragms. Advanced Electromagnetics, 10, No. 2, 44—55. http://doi.org/10.7716/aem.v10i2.1713.
60. Piltyay S., Bulashenko A., Sushko O., Bulashenko O., Demchenko I. (2021). Analytical modeling and optimization of new Ku-band tunable square waveguide iris-post polarizer. Int. J. Numerical Modelling: Electronic Networks, Devices and Fields, 34, No. 5, 1—27. http://doi.org/10.1002/JNM.2890.
61. Piltyay S. I., Dubrovka F. F. (2013). Eigenmodes analysis of sectoral coaxial ridged waveguides by transverse field-matching
62. Pozar D. M. (2012). Microwave Engineering. Hoboken, New Jersey, USA: John Wiley and Sons, 732 p.
63. Prikolotin S. A., Kirilenko A. A. (2011). Mode matching technique allowance for field singularities as applied to inner problems with arbitrary piecewise-coordinate boundaries. Part 1. Eigenmode spectra of orthogonic waveguides. Telecommunications and Radio Engineering, 70, No.11, 937—958.  http://doi.org/10.1615/TelecomRadEng.v70.i11.10.
64. Rud L. A., Shpachenko K. S. (2011). Polarizer on sections of square waveguides with inner corner ridges, Proceedings of VIII IEEE International Conference on Antenna Theory and Techniques (20—23 May 2011). Kyiv, 338—340. http://doi.org/10.1109/ICATT.2011.6170775.
65. Rud L. A., Shpachenko K. S. (2012). Polarizers on a segment of square waveguide with diagonally ridges and adjustment iris. Radioelectronins and Communications Systems, 55, No. 10, 458—463. http://doi.org/10.3103/S0735272712100044.
66. Rud L .A., Shpachenko K. S. (2012). Polarizers on the basis of sections of a square waveguide with diagonally arranged square ridges: an electrodynamics model and characteristic. Telecommunications and Radio Engineering, 75, No. 1, 1—9. http://doi.org/10.1615/TelecomRadEng.v71.i11.20.
67. Ruiz-Cruz J. A., Montejo-Garai J. R., Leal-Sevillano C. A., Rebollar J. M. (2018). Orthomode transducers with folded double-symmetry junctions for broadband and compact antenna feeds. IEEE Transactions on Antennas and Propagation, 66, No. 3, 1160—1168. http://doi.org/10.1109/TAP.2018.2794364.
68. Sanchez J. R., Bachiller C., Julia M., Nova B., Esteban H., Boria V. E. (2018). Microwave filter based on substrate integrated waveguide with alternating dielectric line sections. IEEE Microwave and Wireless Components Letters, 28, No. 11, 990—992. http://doi.org/10.1109/LMWC.2018.2871644.
69. Serebryannikov A. E., Vasylchenko O. E., Schunemann K. (2004). Fast coupled-integral-equations-based analysis of azimuthally corrugated cavities. IEEE Microwave Wireless Comp. Lett., 14, No. 5, 240—242. http://doi.org/10.1109/LMWC.2004.827833.
70. Steshenko S. O., Prikolotin S. A., Kirilenko A. A., Kulik D. Yu, Rud S. L. (2014). Partial domain technique considering field singularities in the internal problems with arbitrary piecewise-coordinate boundaries. Part 2. Plane-transverse junctions and “in-line objects”. Telecommunications and Radio Engineering, 73, No. 3, 187—201. http://doi.org/10.1615/Telecom-RadEng.v73.i3.10.
71. Sun W., Balanis C. A. (1993). MFIE analysis and design of ridged waveguides. IEEE Trans. Microwave Theory Tech., 41, No. 11, 1965—1971. http://doi.org/10.1109/22.273423.
72. Tascone R., Savi P., Trinchenko D., Orta R. (2000). Scattering matrix approach for the design of microwave filter. IEEE Transactions on Microwave Theory and Techniques, 48, No. 3, 423—430. http://doi.org/10.1109/22.826842.
73. Tikhov Y. (2016). Comparison of two kinds of Ka-band circular polarisers for use in a gyro-travelling wave amplifier. IET Microwaves Antennas and Propagation, 10, No. 2, 147—151. http://doi.org/10.1049/IET-MAP.2015.0292.
74. Virone G., Tascone R., Baralis M., Peverini O. A., Oliver A., Orta R. (2005). A novel design tool for waveguide polarizers. IEEE Transactions on Microwave Theory and Techniques, 53, No 3, 888—894. http://doi.org/10.1109/TMTT.2004.842491.
75. Virone G., Tascone R., Peverini O. A., Orta R. (2007). Optimum iris set concept for waveguide polarizers. IEEE Microwave and Wireless Components Letters, 17, No. 3, 202—204. http://doi.org/10.1109/LMWC.2006.890474.
76. Virone G., Tascone R., Peverini O. A., Addamo G., Orta R. (2008). Combined-phase-shift waveguide polarizer. IEEE Microwave and Wireless Components Letters, 18, No. 8, 509—511. http://doi.org/10.1109/LMWC.2008.2001005.
77. Zafar H., Odeh M., Khilo A., Dahlem M.S. (2020). Low-loss broadband silicon TM-pass polarizer based on periodically structured waveguides. IEEE Photonics Technology Letters, 32, No. 17, 1029—1032. https://doi.org/10.1109/LPT.2020.3011056.
78. Zhang F., Huang M., Wang H, Chen G.. (2010). Study of dual-frequency polarizer for electron cyclotron resonance heating systems of 105 and 140 GHz. IEEE Transactions on Plasma Science, 48, No. 5, 1298—1302. http://doi.org/10.1109/TPS.2020.2984084.
79. Zheng S. Y., Chan W. S., Man K. F. (2010). Broadband phase shifter using loaded transmission line. IEEE Microwave and Wireless Components Letters, 20, No. 9, 498—500. http://doi.org/10.1109/LMWC.2010.2050868.
80. Wang X., Huang X., Jin X. (2016). Novel square/rectangle waveguide septum polarizer. Proceedings of IEEE International Conference on Ubiquitous Wireless Broadband (16—19 October 2016). Nanjing, China. http://doi.org/10.1109/ICUWB.2016.7790510.