Global and local effects of seismic activity in the ionosphere

1Zakharov, IG, 1Chernogor, LF
1V.N. Karazin National University of Kharkiv, Kharkiv, Ukraine
Space Sci. & Technol. 2022, 28 ;(6):12-24
https://doi.org/10.15407/knit2022.06.012
Publication Language: Ukrainian
Abstract: 
We considered ionospheric effects of powerful seismic events using total electron content (TEC) of maps of the ionosphere (http://www.aiub.unibe.ch/download/CODE/) for the northern hemisphere, except the polar region, in the winter seasons of 2012—2018. It is shown that the seismic-ionospheric effect is global, which is superimposed by local effects over the epicenters of individual earthquakes (EQ). Temporal TEC variations near the time of strong EQs at a great distance from their epicenters (global effect) consist of two maxima: the precursor and the «aftershock» maximum. In TEC variations over the EQ epicenter (local effect), only a precursor is usually registered, the amplitude of which at night (on average, ~ 8 %) is about twice as high as during the day. Always (locally and globally) after a positive surge in TEC, its reduced values ​​are observed for several days. The maximum amplitude zone of the seismic-ionospheric effect belongs to the middle latitudes, especially 35...40° N, and within this zone at longitudes near 30° W (Mid-Atlantic ridge) and 140...150° E (Japanese islands and adjacent waters of the Pacific Ocean). Latitudinal amplitude maxima of the seismic-ionospheric effect are in good agreement with the latitudinal maxima of the EQ number in both geographic and geomagnetic coordinate systems. Changes in the EQ number and, consequently, the effect in the ionosphere on geomagnetic coordinates are more ordered, which indicates a significant impact on the seismicity of the same processes at the boundary of the liquid core and lower mantle, which form the Earth’s magnetic field. In addition to seismic belts and zones of mid-ocean ridges, an increase in TEC has been recorded along the so-called lineaments, marking the weakened zones of the Earth’s crust with increased flows of deep gases. The correspondence between the spatial features of seismicity and the seismic-ionospheric effect testifies in favor of the «radon» mechanism of lithosphere-ionosphere coupling and indirectly confirms the role of deep gases in the formation of seismicity planetary features.
Keywords: global perturbations, ionosphere, lithosphere-ionosphere coupling, local perturbations, seismicity, total electron content
References: 

1. Barkin, Yu. V. (2002). Explanation of the endogenous activity of planets and satellites and its cyclicity, Izvestiya Rus. Acad. Natural Sci., Geosci. Section, 9, 45—97 [in Russian].
2. Bondur, V. G., Zverev, A. T. (2006). Physical nature of lineaments recorded on space images during monitoring of seismically hazardous areas. Modern Problems of Remote Sensing of the Earth from Space, 2, № 3, 177—183 [in Russian].
3. Voitov, G. I. (1999). On cold degassing of methane into the Earth’s troposphere. Teor. and regional problems of geodynamics.Trudy Geolog. In-te Rus. Acad. Sci., is. 515. Мoscow: Nauka, 242—251 [in Russian].
4. Gorkavy, N. N., Trapeznikov, Yu. A., Fridman, A. M. (1994). On the global component of the seismic process and its relationship with the observed features of the Earth’s rotation. Doklady Rus. Acad. Sci., Geophysics, 338, № 4, 525—527 [in Russian].
5. Dobrovolsky, I. P. (1991). Theory of tectonic earthquake preparation. Moscow: Nauka, 224 p. [in Russian].
6. Zakharov, I. G., Chornogor, L. F. (2021). Influence of global seismic activity on processes in the atmosphere and ionosphere. Space Science and Technology, 27,№ 5, 19—34 [in Ukrainian].
https://doi.org/10.15407/knit2021.05.019
7. Kuzmin, Yu. O. (2004). Modern geodynamics of fault zones. Physics of the Earth, 10, 95–111 [in Russian].
8. Levin, B. V. (2001).The role of the Earth’s inner core movements in tectonic processes. Fundamental problems of general tectonics. Moscow: Scientific world Publ., 444–460 [in Russian].
9. Levin, B. V., Chirkov, E. B. (1999). Latitudinal distribution of seismicity features and the rotation of the Earth. J. Volcanology and Seismology, 6, 65—69 [in Russian].
10. Letnikov, F. A. (2002). Earth degassing as a global process of self-organization. Degassing of the Earth: geodynamics, geofluids, oil and gas. Proc. of the Int. Conf. Moscow: GEOS Publ., pp. 6—7 [in Russian].
11. Letnikov, F. A. (2004). About one of the possible sources of thermal energy of endogenous processes of the Earth. Doclady Rus. Acad. Sci., 398, № 6, 792—794 [in Russian].
12. Pavlov, V. P. (2004). Perturbation theory for the stress tensor in the Earth. Theor. and Mat. Physics, 141,№ 4, 117—130 [in Russian].
13. Pulinets, S. A., Ouzounov, D. P., Karelin, A. V., Davidenko, D. V. (2015). Physical bases of the generation of short term earthquake precursors: A complex model of ionization_induced geophysical processes in the lithosphere – atmosphere – ionosphere – magnetosphere system. Geomag. Aeron., 55, № 4, 521-538.
https://doi.org/10.1134/S0016793215040131
14. Volcanodiscovery. URL:https://www.volcanodiscovery.com/earthquakes/global-seismic-activity-lev... (Lastaccessed: 27.04.2022).
15. Spivak, A.A., Kozhukhov, S.A., Sukhorukov, S.V., Kharlamov, V.A. (2009). Radon emanation as an indicator of the intensity of intergeospheric interactions at the Earth’s crust-atmosphere interface. Izvestiya, Physics of the Solid Earth, 45, 118—133 [in Russian].
16. Syvorotkin, V. L. (1994). Ozone Layer, Earth Degassing, Rifting and Global Catastrophes. Moscow: Geoinformmark Publ., 68 p.[in Russian].
17. Tertyshnikov, A. V. (2013). Estimation of the practical significance of geomagnetic precursors of strong earthquakes. Heliogeophysical Res., 3, 63—70 [in Russian].
18. Chernogor, L. F. (2003). Physics of the Earth, atmosphere and geocosmos in the light of the systemic paradigm. RadioPhysics and Radio Astronomy, 8,№ 1, 59-106 [in Russian].
19. Chernogor, L. F. (2019). Possible Generation of Quasi-Periodic Magnetic Precursors of Earthquakes. Geomagn. Aeron., 59, № 3, 374–382. https://doi.org/10.1134/S001679321903006X
20. Arellano-Baeza, A. A., Zverev, A. T., Malinnikov, V. A. (2006). Study of changes in the lineament structure, caused by earthquakes in South America by applying the lineament analysis to the Aster (Terra) satellite data. Adv. Space Res., 37, № 4, 690—697.
21. Chernogor, L. F., Rozumenko, V. Т. (2008). Earth – Atmosphere – Geospace as an open nonlinear dynamical system. Radio Physics and Radio Astronomy. 13, № 2. P. 120—137.
22. Courtillot, V., Davaille, A., Besse, J., Stock, J. (2003). Three distinct types of hotspots in the Earth’s mantle. Earth and Planet. Sci. Lett., 205, 295—308.
23. Gufeld, I. L., Matveeva, M. I., Novoselov, O. N. (2011). Why we cannot predict strong earthquakes in the Earth’s crust. Geodynamics & Tectonophysics, 2,№ 4, 378—415.
https://doi.org/10.5800/GT2011240051
24. Heki, K. (2011). Ionospheric electron enhancement preceding the 2011 Tohoku‐Oki earthquake. Geophys. Res. Lett., 38, L17312.
https://doi.org/10.1029/2011GL047908
25. Hobara, Y., Parrot, M. (2005). Ionospheric perturbations linked to a very powerful seismic event. J. Atmos. Terr. Phys., 67, 677—685.
https://doi.org/10.1016/j.jastp.2005.02.006
26. Khachikjan, G. (2009). Spatial earthquake statistics in geomagnetic coordinates. Proc.of Intern.earthquake symposium. Kocaeli. Turkey, 407—413.
http://kocaeli2009.kocaeli.edu.tr/fullpaper09.pdf.
27. Khachikyan, G. Ya., Zhakupov, N. S.,Kadyrkhanova, N. Zh. (2013). Geomagnetic conjugacy of modern tectonic structures. Geodynamics & Tectonophysics, 4, № 2, 187—195.
https://doi.org/10.5800/GT¬2013¬4¬2¬0097
28. Liperovsky, V. A., Meister, C.-V., Liperovskaya, E. V., Davidov, V. F., Bogdanov, V. V. (2005). On the possible influence of radon and aerosol injection on the atmosphere and ionosphere before earthquakes. Natural Hazards and Earth System Sci., 5, №6, 783—789.
https://doi.org/https://doi.org/10.5194/nhess-5-783-2005.
29. Liu, J. Y., Chen, Y. I., Chuo, Y. J., Chen, C. S. (2006). A statistical investigation of preearthquake ionospheric anomaly. J. Geophys. Res.,111, A05304.
https://doi.org/10.1029/2006
30. Livermorea, P. W., Hollerbach, R., Jacksonc, A. (2013). Electromagnetically driven westward drift and inner-core superrotation in Earth’s core. Proc. of the National Academy of Sciences of the USA (PNAS), Sept. 16, 1—5.
https://doi.org/10.1073/pnas.1307825110
31. Ouzounov, D., Freund, F. (2004). Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data. Adv. Space Res., 33, 268—273.
https://doi.org/10.1016/S0273-1177(03)00486-1
32. Pavlenkova, N. I. (2005). Fluids-rotation conception of global geodynamics. Bull. Soc. Geol. It. Volume Speciale, 5, 9—22.
33. Pulinets, S., Khachikyan, G. (2021). The global electric circuit and global seismicity. Geosciences, 11, 491.
https://doi.org/10.3390/geosciences11120491
34. Pulinets, S., Tsidilina, M., Ouzounov, D., Davidenko, D. (2021).From Hector Mine M7.1 to Ridgecrest M7.1 earthquake. A look from a 20-year perspective. Atmosphere,12 (262), 16 p.
https://doi.org/10.3390/atmos1202026
35. Sun, W. (1992). Seismic energy distribution in latitude and a possible tidal stress. Physics of the Earth and Planetary Interiors, l, 205–216.
https://doi.org/10.1016/0031-9201(92)90077-9
36. Zakharov, I. G., Chernogor, L. F. (2018). Ionosphere as an indicator of processes in the geospace, troposphere, and lithosphere. Geomagn. Aeron., 58, № 3, 430—437.
https://doi.org/10.1134/S0016793218030167