Artificial acoustic modification of the near-earth environment

1Koshovy, VV, 1Ivantyshyn, ОL, 2Nogach, RТ, 3Chernogor, LF, 1Nazarchuk, ZT, 2Melnyk, MO, 2Kalita, BI, 1Kharchenko, BC, 1Romanyshyn, IM, 1Lozynskyi, AB, 1Rusyn, BP, 2Karatayeva, LM, 2Lyubinetsky, ZI, 2Alyohina, LV, 2Lipsky, VK
1Karpenko Physico-Mechanical Institute of the National Academy of Science of Ukraine, L'viv, Ukraine
2L’viv Centre of the Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, L’viv, Ukraine
3V.N. Karazin National University of Kharkiv, Kharkiv, Ukraine
Space Sci. & Technol. 2020, 26 ;(2):19-58
https://doi.org/10.15407/knit2020.02.019
Publication Language: Ukrainian
Abstract: 
The article is devoted to the study of some possibilities of implementing artificial acoustic modification of the near-Earth medium from the Earth’s surface to ionospheric heights using a ground-based controlled acoustic infrasonic emitter. The results of previous studies are analyzed, and the characteristic parameters of infrasound generated by natural phenomena and man-made processes, as well as the features of its influence on the state of the near-Earth environment, are examined. The basic conditions for the implementation of artificial acoustic modification of the ionosphere are substantiated. The results of the first stage of
the verification of the proposed methodology are presented and discussed. For the verification, we used: the radio astronomy method of remote sensing of the ionosphere, the radio emission of space radio sources as sounding ones, the ground-based complex of the acoustic-electromagnetic sounding of the ionosphere as a part of the URAN-3 radio telescope and the groundbased acoustic emitter of the parametric type. The first stage of the verification was carried out at frequencies close to the upper boundary of the infrasound range (~30 Hz). A preliminary analysis of the obtained results confirmed that even in the case of ground-based infrasound generation with a frequency of f ~ 30 Hz, conditions might arise in the near-Earth space that allow the realization of controlled acoustic modification of the ionosphere and the detection of weak acoustic-ionospheric disturbances.
            The latter can be formed in the ionosphere under certain plasma conditions, as well as in environmental conditions of the surface and upper atmosphere, which, in turn, determine the weather conditions in the surface layer and affect the parameters of generation and propagation of atmospheric acoustic waves. The next stage of the work will involve the study of the possibilities of implementing artificial acoustic modification of the ionosphere using a ground-based controlled acoustic emitter in the frequency range 2…10 Hz.
Keywords: acousto-ionospheric disturbances, advanced spectral analysis, artificial acoustic modification of the ionosphere, ground-based controlled acoustic emitter, near-Earth space, radio astronomy method, transmission radio signal, URAN-3 radio telescope
References: 
1. Al’perovych L. S., Aphraimovych E. L., Vugmeister B. E., et al. (1985). Acoustic wave of explosion. Earth Physics, 11, 32—42 [in Russian].
2. Birfel’d Ja. H., Tarancov A. V. (1963). The effect of Earth’s seismicity through acoustic waves on the ionosphere. State Register of Discoveries of the USSR, № 128 [in Russian].
3. Gossard E. E., Hooke Y. X. (1975). Waves in the Atmosphere. Moscow: Publishing Mir. 4. Drobzheva Ya. V. (2003). Propagation of acoustic waves in the upper atmosphere. Doctor’s Thesis, Almaty, 143 p. [in Russian].
5. Drobzheva Ya. V., Krasnov V. M. (1997). Results of the project «MASSA» after 15 years. Explosive Case, 3, 34—39 [in Russian].
6. Emelyanov L. Ya., Zhivolup T. G., Soroka S. A., Cheremnykh O. K., Chernogor L. F. (2015). Ground-based acoustic effects on the atmosphere: the results of observations by means of incoherent scattering and vertical sounding techniques. Radio Physics and Radio Astronomy, 20 (1), 37—47 [in Russian].
7. Ivantyshyn O. L. (2007). Information — measuring complex based on the radio telescope URAN-3 for the study of weak acousto — ionospheric disturbances. Extended abstract of candidate’s thesis. Karpenko Physico-Mechanical Institute of the NAS of Ukraine [in Ukrainian].
8. Kalita B. I., Karatayeva L. M., Mezentsev V. P., Nogach R. T., Parrot M. (2013). Active acoustic experiments with the satellite DEMETER. Space project “Ionosat—Micro”: Monograph. (Eds S. A. Zasukha, O. P. Fedorov). Kyiv: Academperiodika, 193—199 [in Russian].
9. Kalita B. I., Karatayeva L. M., Mezentsev V. P., Nogach R. T., Soroka S. O. (2011). The effect of acoustic disturbances on a transparency of the ionosphere. Information Selection and Processing, 35 (111), 77—83 [in Ukrainian].
10. Kallystratova M. A., Kon A. Y. (1985). Radioacoustic sounding of the atmosphere. Moscow: Nauka [in Russian].
11. Koshovyy V. V. (1999). Radiophysical and radioastronomical diagnostics of ionospheric effects caused by the ground — based infrasound emitter (preliminary results). Universities News. Radiophysics, 42 (8), 785—798 [in Russian].
12. Koshovyy V. V., Ivantyshyn O. L. (1998). Detection of weak acousto-ionospheric disturbances by the method of radiowaves scattering on small — scale inhomogeneities using the decameter radio telescope URAN-3. Information Selection and Processing, 12 (88), 32—36 [in Ukrainian].
13. Koshovyy V. V., Ivantyshyn O. L. (1999). Research of the acoustic artificial ionospheric disturbances by the radio astronomical method. Information Selection and Processing, 13 (89), 21—25 [in Ukrainian].
14. Koshovyy V. V., Soroka S. О. (1998). Acoustic disturbance of ionospheric plasma by a ground-based radiator. I. Experimental detection of the acoustic and ionospheric disturbances. Space Science and Technology, 4 (5/6), 3—17 [in Ukrainian].
15. Matvijchuk Ja. N., Soroka S. A. (2002). Possible mechanism of electromagnetic responses to acoustic disturbances in the atmosphere. Space Science and Technology, 8(Supplement2), 194—200.
16. Nazarchuk Z. T., Koshevoy V. V., Soroka S. A., Ivantishin O. L., Lozynskyy A. B., Romanishin I. M. (2003). To the question of acousto — electromagnetic sounding of the ionosphere. Space Science and Technology, 9, Suppl. 2, 17—23 [in Russian].
17. Negoda A. A., Soroka S. A. (1999). Prospects for the development of atmospheric and ionospheric studies using artificial acoustic effects. Space Science and Technology, 5 (2/3), 3—12 [in Russian].
18. Patent of Ukraine № 59531 МПК G01W 1/08 (2006. 01). Ivantyshyn O. L., Koshovyy V. V., Lozynskyi A. B., Nazarchuk Z. T., Romanyshyn I. M., Soroka S. O. Methods of estimation of the infrasonic environment on the ground surface based on acousto-electromagnetic monitoring of the ionosphere [in Ukrainian].
19. Selivanov Ju. O., Rapoport Ju. G., Cheremnyh O. K. (2018). Ionospheric response to acoustic action according to the data of micrometers DEMETER and Chibis-M. Space Science and Technology, 24 (6), 41—56 [in Ukraine].
20. Hrgian A. H., Kuznecov G. I. (1996). Atmospheric ozone, its variations and geophysical relations. Interaction in the “lithosphere — hydrosphere — atmosphere” system. Moscow: Nedra, 241—267.
21. Cheremnykh О. К., Klimov S. І., Korepanov V. E., Koshovyy V. V., Melnik М. О., Ivantyshyn О. L., Mezentsev V. P., Nogach R. Т., Rapoport Yu. G., Selivanov Yu. A., Semenov L. P. (2014). Ground — space experiment for artificial acoustic modification of the ionosphere. Some preliminary results. Space Science and Technology, 20 (6), 60—73 [in Russian].
22. Chernogor L. F. (1997). Infrasound impact of earthquakes and their precursors on the parameters of near — Earth space. Radio Physics and Radio Astronomy, 2 (4), 463—472 [in Russian].
23. Chernogor L. F. (1999). Energetics of processes in the atmosphere and near — Earth space in the light of the project «Warning ». Space Science and Technology, 5 (1), 38—47 [in Russian].
24. Chernogor L. F. (2003). Physical processes in the near — Earth environment that accompanied hostilities in Iraq (March — April 2003). Space Science and Technology, 9 (2/3), 13—33 [in Russian].
25. Chernogor L. F. (2004). Geophysical effects and geoecological consequences of mass chemical explosions in military warehouses in city Artyomovsk. Geophysical J., 26 (4), 31—44 [in Russian].
26. Chernogor L. F. (2004). Geophysical effects and environmental consequences of fire and explosions at the military base near Melitopol. Geophysical J., 26 (6), 61—73 [in Russian].
27. Chernogor L. F. (2006). Ecological consequences of mass chemical explosions in a technological catastrophe. Geoecology. Engineering geology. Hydrogeology. Geocryology, № 6, 522—535 [in Russian].
28. Chernogor L. F. (2006). Tropical cyclone as an element of the Earth system. Space Science and Technology, 12 (2/3), 16—26 [in Russian].
29. Chernogor L. F. (2008). Geoecological consequences of the explosion of an ammunition depot. Geoecology. Engineering geology. Hydrogeology. Geocryology, № 4, 359—369 [in Russian].
30. Chernogor L. F. (2008). On the nonlinearity in nature and science. Monograph. Kharkiv: Karazin Kharkiv National University [in Russian].
31. Chernogor L. F. (2012). Physics and Ecology of Disasters. Monograph. Kharkiv: Karazin Kharkiv National University Publ. [in Russian].
32. Chernogor L. F. (2017). Largest arsenal ammunition catastrophe. Sci. and Tekh., 5 (132), 4—10 [in Russian].
33. Chernogor L. F. (2017). Chelyabinsk meteoroid acoustic effects. Radiophysics and Radioastronomy, 22 (1), 53—66 [in Russian].
34. Chernogor L. F. (2018). Statistical Characteristics of Meteoroid Parameters in the Earth’s Atmosphere. Kinematics and Physics of Celestial Bodies, 34 (3), 134—146 [in Russian].
35. Chernogor L. F. (2019). The physical effects of Lipetsk meteoroid. Kinematics and Physics of Celestial Bodies, 35 (4) , 174— 188. Part 2. 35 (5), 217—230. Part 3. 35 (6), 271—285 [in Russian].
36. Chernogor L. F. (2019). Possible Generation of Quasi — Periodic Magnetic Precursors of Earthquakes. Geomagnetism and Aeronomy, 59 (3), 374—382.
37. Chernohor L. F., Liaschuk A. Y., Shevelev N. B. (2018). Parameters of infrasound signals in the atmosphere generated by massive explosions in the ammunition arsenal. Radiophysics and Radioastronomy, 23 (4), 280—293 [in Russian].
38. Chernogor L. F., Shevelev N. B. (2017). Global’naja statistika bolidov v atmosfere Zemli [Global statistics of bolides in the terrestrial atmosphere]. Radiophysics and Radioastronomy, 22(2), 138—145 [in Russian].
39. Chernohor L. F., Shevelev N. B. (2017). Dependence of the amplitude of the infrasonic signal generated by the explosion of a powerful volcano, on the distance. Karazin National University Bulletin. Ser. Radiophysics and Electronics, 27, 57—60 [in Russian].
40. Chernohor L. F., Shevelev N. B. (2018). Characteristics of the infrasound signal generated by the Chelyabinsk space body: global statistics. Radiophysics and Radioastronomy, 23 (1), 24—35 [in Russian].
41. Chernohor L. F., Shevelev N. B. (2018). Dependence of the amplitude of the infrasonic wave generated by the Tungus cosmic body, from a distance. Radiophysics and Radioastronomy, 23 (2), 94—103 [in Russian].
42. Chernohor L. F., Shevelev N. B. (2018). Parameters of the infrasound signal generated by a meteoroid over Indonesia on October 8, 2009. Kinematics and Physics of Celestial Bodies, 34 (3), 59—75 [in Russian].
43. Chornohor L. F., Liaschuk O. I., Shevelev M. B. (2018). Parameters of infrasonic signals in the atmosphere caused by a technogenic catastrophe near Vinnitsa: results and processing of data from the Ukrainian microbarographs net. Fifth Conf. “Computational methods and systems of information transformation”. Collection of papers. L’viv, 2018: Karpenko FMI of the NASU, 99—103 [in Ukrainian].
44. Arrowsmith S. J., ReVelle D. O., Edwards W. N., Brown P. G. (2008). Global detection of infrasonic signals from three large bolides. Earth, Moon, and Planets, 102(№ 1–4), 357—363.
45. Balachandran N. K. Infrasonic signals from thunder. (1979). J. Geophys. Res., 84C (№ 4), 1735—1745.
46. Balachandran N. K., Donn W. L. (1971). Characteristics of Infrasonic Signals from Rockets. Geophys. J. International, 26 (№ 1–4), 135—148.
47. Balachandran N. K., Donn W. L., Rind D. H. (1977). Concorde sonic booms as an atmospheric probe. Science, 197 (№ 4298), 47—49.
48. Blanc E. (1985). Observations in the upper atmosphere of infrasonic waves from natural or artificial sources: a summary. Ann. Geophys., 3, 673—688.
49. Blaunstein N. (2001). Method of earthquake prediction. The United States Patent No.: US 6,246,964 B1.
50. Brown P., Pack D., Edwards W. N., Revelle D. O., Yoo B. B., Spalding R. E., Tagliaferri E. (2004). The orbit, atmospheric dynamics, and initial mass of the Park Forest meteorite. Meteoritics & Planetary Science, 39, № 11, 1781—1796.
51. Chernogor L. F., Liashchuk O. I. (2015). Infrasound observations of the bolide explosion over Romania on January 7. Kinematics and Physics of Celestial Bodies, 33 (№ 6), 276—290.
52. Chernogor L. F., Liashchuk O. I., Rozumenko V. T., Shevelev M. B. (2018). Infrasonic Signals Generated by a Series of Chemical Explosions near Vinnytsia City. Astronomy and Space Physics in the Kyiv Un-ty, Kyiv, Ukraine, May 29—June 01, 2018. Book of Abstracts, 87—88.
53. Chernogor L. F., Liashchuk O. I., Shevelev M. B. (2019). Parameters of infrasonic signals generated in the atmosphere by multiple explosions at an ammunition depot. Proceedings of the XIX Intern. young scientists’ conference on applied physics (May 21—25, 2019). Kyiv, 2019, 100—101.
54. Chernogor L. F., Shevelev N. B. (2018). Parameters of the infrasound signal generated by a meteoroid over Indonesia on October 8, 2009. Kinematics and Physics of Celestial Bodies, 34 (3), 147—160.
55. Chernogor L. F., Qiang Guo, Rozumenko V. T., Shevelev M. B. (2018). The parameters of the infrasonic waves generated by the Chelyabinsk meteoroid. Astronomy and Space Physics in the Kyiv University, Kyiv, Ukraine, May 29—June 01, 2018. Book of Abstracts, 89—90.
56. Che Y., Park J., Kim I. (2014). Infrasound signals from the underground nuclear explosions of North Korea. Geophysical J. International, 198, № 1, 495—503.
57. Chyba C. F., Thomas P. J., Zahnle K. J. (1993). The 1908 Tunguska explosion: atmospheric disruption of a stony asteroid. Nature, 361 (№ 6407), 40—44.
58. Cook R. K., Young J. M. (1962). Strange Sounds in the Atmosphere. Part II. Sound: Its Uses and Control, 1 (3), 25—33.
59. Donn W. L. (1978). Exploring the Atmosphere with Sonic Booms: Or How I Learned to Love the Concorde. American Scientist, 66 (№ 6), 724—733.
60. Donn W. L., Balachandran N. K. (1981). Mount St. Helens eruption of 18 May 1980: Airwaves and explosive yield. Science, 213 (№ 4507), 539—541.
61. Donn W. L., Posmentier E., Fehr U., Balachandran N. K. (1967). Infrasound at long range from Saturn V, 1967. Science, 162 (№ 3858), 1116—1120.
62. Edwards W. N., Brown P. G., ReVelle D. O. (2006). Estimates of meteoroid kinetic energies from observations of infrasonic airwaves. J. Atmospheric and Solar-Terrestrial Physics, 68, 1136—1160.
63. ElGabry M. N., Korrat I. M., Hussein H. M., Hamama I. H. (2017). Infrasound detection of meteors. NRIAG J. Astronomy and Geophysics, 6 (№ 1), 68—80.
64. Ens T. A., Brown P. G., Edwards W. N. (2012). Infrasound production by bolides: A global statistical study. J. Atmospheric and Solar-Terrestrial Physics, 80, 208—229.
65. Galperin Yu., Hayakawa M. (1996). On Magnetospheric Effects of Experimental Ground Explosions Observed From AUREOL-3. Geoelectric, 48, 1241—1263.
66. Galperin Yu., Hayakawa M. (1998). On possibility of parametric amplifier in the stratosphere — mesosphere suggested by active MASSA experiments with the AUREOL-3 satellite. Earth Planets Space, 50, 827—832.
67. Gi N. (2017). Using Bolide Airwaves To Estimate Meteoroid Source Characteristics and Window Damage Potential. Electronic Thesis and Dissertation Repository, 4688, 165 p.
URL: https://ir. lib. uwo. ca/etd/4688 (Last accessed 17.07.2019).
68. Gokhberg M. B., Shalimov S. L. (2000). Lithosphere — ionosphere coupling and its modeling. Russian J. Earth Sciences, 2, 95—108.
69. Gotynyan O. E., Ivchenko V. M., Rapoport Yu. G., Parrot M. (2003). Ionospheric disturbances excited by the lithospheric gas source of acoustic gravity waves before earthquakes. Space Science and Technology, 9, Suppl. No. 2, 89—l05.
70. Koshevaya S. V., Grimalsky V. V., Perez-Enriquez R., Kotsarenko A. (2006). Increase of the Transparency for Cosmic Radio Waves due to the Decrease of Density of the Ionosphere Caused by Acoustic Waves. Physica Scripta, 72 (1), 91.
71. Koshevaya, S., Kotsarenko, Yu., Escobedo, J. A., Kotsarenko and Yutsis, V. A. (2014). Cosmic Radio Waves Caused by Seismic Volcano Activities. J. Electromagnetic Analysis and Applications, 6, 335—341.
URL: http://www. scirp. org/journal/jemaa, (Last accessed 17.07.2019)
72. Koshevaya S., Makarets N., Grimalsky V., Kotsarenko A., Perez Enríquez R. (2005). Spectrum of the seismic-electromagnetic and acoustic waves caused by seismic and volcano activity. Natural Hazards and Earth System Science, Copernicus Publications on behalf of the European Geosciences Union, 5 (2), P. 203-209. HAL Id: hal-00299144.
URL: https://hal archives-ouvertes.fr/hal-00299144 (Last accessed 17.07.2019).
73. Koshovyy V. V., Ivantyshyn O. L., Lozynskyi A. B., et al. (1997). Radiophysical complexes for cosmic investigations based on Ukrainian radiotelescope URAN-3. Asta Cosmologica. FASCICULUS XXIII-2, 67—70.
74. Kotsarenko N. Ya., Soroka S. A., Koshevaya S. V., Koshovyy V. V. (1999). Increase of the transparency of the ionosphere for cosmic radiowaves caused by a low frequency wave. Physica Scripta, 59 (№ 2), 174—181.
75. Krasnov V. M., Kuleshov Yu. V. (2014). Variation of infrasonic signal spectrum during wave propagation from Earth’s surface to ionospheric altitudes. Acoust. Physics, 60 (No. 1), 19—28.
76. Landès, M., Ceranna L., Le Pichon A. (2012). Localization of microbarom sources using the IMS infrasound network. J. Geophys. Res., 117D (No. 6).
77. Le Pichon A., Blanc E. Hauchecorne A. (Eds). (2010). Infrasound Monitoring for Atmospheric Studies. New York: Springer Science+Business Media, 735 p.
78. Liperovsky V. A., Pokhotelov O. A., Meister C. V., Liperovskaya E. V. (2008). Physical models of coupling in the lithosphere — atmosphere — ionosphere system before earthquakes. Geomagnetism and Aeronomy, 48 (№ 6), 795—806.
79. Liszka L. (2008). Infrasound: a summary of 35 years of infrasound research. Swedish Institute of Space Physics. 150 p.
80. Meteor Infrasound. What is Infrasound? The Department of Physics and Astronomy, the University of Western Ontario, Meteor Physics. URL: http://meteor. uwo. ca/research/infrasound/is_whatisIS. html (Last accessed 17.07.2019 р.)
81. Olson J. (2012). Infrasound rocket signatures. Advanced Maui Optical and Space Surveillance Technologies Conference, 1, 82.
82. Parrot M., Hayosh M., Soroka S. O. (2007). Acoustic experiments in the ionosphere with the DEMETER satellite. EGU General Assembly, Vienna, 15—20 April 2007, 1607-7962/gra/EGU2007-A-04428.
83. Pichon A., Garcés M., Blanc E., Barthelemy M., Drob P. (2002). Acoustic propagation and atmosphere characteristics derived from infrasonic waves generated by the Concorde. J. Acoustical Soc. Amer., 111 (№ 1), 629—641.
84. Ponomarev E. A., Erushchenkov A. I. (1978). Infrasonic waves in the Earth’s atmosphere (review). Radiophysics and Quantum Electronics, 20 (№ 12), 1218—1229.
85. Proksch N. (2017). Lightning detection with infrasound. Master’s Thesis. Utrecht University. Royal Netherlands Meteorological Institute, 53 p.
86. Rapoport V. O., Bespalov P. A., Mityakov N. A., Parrot M., Ryzhov N. A. (2004). Feasibility study of ionospheric perturbations triggered by monochromatic infrasonic waves emitted with a ground-based experiment. J. Atmospheric and Solar-Terrestrial Physics, 66(12), 1011—1017.
87. Rapoport Yu. G., Cheremnykh O. K., Koshovyy V. V., Melnik M. O., Ivantyshyn O. L., Nogach R. T., Selivanov Yu. A., Grimalsky V. V., Mezentsev V. P., Karataeva L. M., Ivchenko V. M., Milinevsky G. P., Fedun V. N., Tkachenko E. N. (2017). Ground-based acoustic parametric generator impact on the atmosphere and ionosphere in an active experiment. Ann. Geophys., 35, 53—70.
88. Reed J. W. (1987). Air pressure waves from Mount St. Helens eruptions. J. Geophys. Res., 92D (№ 10), 11979—11992.
89. Sakurai A. (1965). Blast wave theory. Basic developments in fluid dynamics. Holt M. (ed). New York: Academic Press, Vol. 1, 309—375.
90. Savina O. N., Bespalov P. A. (2015). Ionospheric Response to the Acoustic Gravity Wave Singularity. Acta Geophysica, 63(1), 319—328
URL: http://creativecommons. org/licenses/by-nc-nd/3. 0/ (Last accessed 17.07.2019).
91. Silber E. A., Brown P. G. (2014). Optical observations of meteors generating infrasound. I. Acoustic signal identification and phenomenology. J. Atmospheric and Solar-Terrestrial Physics, 119, 116—128.
92. Silber E. A., Brown P. G., Krzeminski Z. (2015). Optical observations of meteors generating infrasound: weak shock theory and validation. J. Geophys. Res.: Planets, 120 (№ 3), 413—428.
93. Silber E. A. (2014). Observational and Theoretical Investigation of Cylindrical Line Source Blast Theory Using Meteors. Electronic Thesis and Dissertation Repository, Paper 2112, 582 p.
94. Soroka S. O., Kalita B. I., Karataeva L. M., et al. (2006). Active acoustic experiments with the satellite DEMETER. International Conference DEMETER, Toulouse, 14—16 June 2006.
95. Whipple F. J. W. (1930). The great Siberian meteor, and the waves, seismic and aerial, which it produces. Q. J. R. Meteorol. Soc., 56 (№ 236), 287—301.