Optimization of design parameters of the main composite fairing of the launch vehicle under simultaneous force and thermal loading

1Kondratiev, AV, 2Kovalenko, VO
1O.M. Beketov National University of Urban Economy in Kharkiv, Kharkiv, Ukraine
2Pivdenne State Design Office, Dnipro, Ukraine
Space Sci. & Technol. 2019, 25 ;(4):03-21
Publication Language: Russian
Main aspects of multi-stage optimization of the mass of main structural elements of launch vehicle’s composite protective fairing under the simultaneous thermal and force loading are outlined. The technique is implemented within the integrated approach to the integrated design of the considered class of engineering proposed earlier.
       The obtained results allow a deep level of simultaneous optimization of thermal protection thickness, layout and arrangement of bearing skins, the height of honeycomb core and geometric parameters of its cell, as well as additional structural parameters for the almost entire range of external loads affecting the protective fairing. At the same time, the allowable temperature ranges of outer and inner surfaces of the considered unit are provided, as well as its rational design’s bearing capacity in all critical areas, taking into account the heat-caused deterioration of physical and mechanical properties of materials used and the implementation of additional functional and technological constraints. Implementation of the proposed methodology for optimizing the structural parameters of a particular real product — the protective fairing of the “Cyclone-4” launch vehicle — revealed its effectiveness expressed in a significant reduction in mass of the optimal design compared to the original one. 
Keywords: composite, optimization, protective fairing, structural-power circuit, thermal and force loading, thermal protection
 1. Bakulin V. N., Gusev E. L., Markov V. G. (2008). Methods for optimal design and calculation of composite structures. Moscow: Fizmatlit Publ., Vol. 2. 256. [In Russian].
2. Belozerov L. G., Kireev V. A. (2003). Composite shells with power and heat effects. Moscow: Fizmatlit Publ. 388 [In Russian].
3. Blyznychenko V. V., Dzhur Ye. O., Krasnikova R. D. (2007). Design and construction of rockets (ed. red. S. M. Konyukhov). Dnipropetrovs’k, DNU Publ. [In Ukrainian].
4. Gajdachuk A. V., Gajdachuk V. E., Kondratiev A. V., Kovalenko V. A., Kirichenko V. V., Potapov A. M. (2016). Methodology for the development of effective structural and technological solutions for composite units of rocket and space technology (ed. A. V. Gajdachuk). Kharkiv, National Aerospace University Kharkiv Aviation Institute Publ. Vol. 2 [In Russian].
5. Gajdachuk V. E., Kirichenko V.V., Kondratiev A. V., Tanchik E. V., Slivinskij V. I., Kushnarev A. P., Kovalenko V. A. (2011). Calculation of the head unit of the Cyclone-4 launch vehicle for various cases of loading. Jeffektivnost› sotovyh konstrukcij v izdelijah aviacionno-kosmicheskoj tehniki. Dnepropetrovsk. No. 4. 91—97. [In Russian].
6. Davidson B. H., Smirnov A. V., Balashov V. V. (2005). Prospects for the development of aerospace systems. Problemy sozdanija perspektivnoj aviacionno-kosmicheskoj tehniki. 79—91 [In Russian].
7. Degtjarev A. V. (2014) Rocket technology. Problems and prospects. Selected scientific and technical publications. Dnepropetrovsk, ART-PRESS Publ., 420. [In Russian].
8. Degtjarev A. V., Kushnarev A. P., Gavrilko V. V., Kovalenko V. A., Kondratiev A. V., Potapov A. M. (2013). Estimation of the carrying capacity of the composite fitting of the carrier compartment separation system. Kosmicheskaja tehnika. Raketnoe vooruzhenie. No 1(103). 18—21 [In Russian].
9. Zamula G. N., Kretov A. S. (2004). Strength of hightemperature structures of aircraft. Kazan’, Kazan. gos. tehnji un-t Publ. 468. [In Russian].
10. Kondratiev A. V., Dmitrenko A. G., Stjenilje K. D., Caricynskij A. A. (2014). Analysis of the nomenclature of typical composite aggregates of space rockets and the design-power circuits used for them. Voprosy proektirovaniya i proizvodstva konstruktsii letatel’nykh apparatov. Vol. 3(79), 112—123 [In Russian].
11. Kulaga E. S., Olenin I. G. (2006). Development of the head fairing of composite materials. Vozdushnyj transport. Vol. 1. 418—436 [In Russian].
12. Linnik A. K., Krasnikova R. D., Lipovskij V. I., Baranov E. Ju (2018). Composites in the construction of the body of the launch vehicles. System analysis of problems and prospects of development and application (ed. A. V. Degtjareva). Dnipro, LIRA Publ. 260. [In Russian].
13. Nemirovskij Ju. V., Jankovskij A. P. (2002). Rational design of reinforced structures (ed. V. M. Fomin). Novosibirsk, Nauka Publ. 488. [In Russian].
14. Polezhaev Ju. V., Reznik S. V., Baranov A. N. (2002). Materials and coatings in extreme conditions. A look into the future (ed. Ju. V. Polezhaev, S. V. Reznik). Moscow, MGTU im. N. Je. Baumana Publ. Vol. 3. 264 [In Russian].
15. Skorohod V. V., Nikiforov N. A, Reznik S. V. (2002). Materials and coatings in extreme conditions. A look into the future (ed. S. V. Reznik). Moscow, MGTU im. N. Je. Baumana Publ. Vol. 2. 296. [In Russian].
16. Tihij V. G., Kondratiev A. V., Smolenko A. G., Kirichenko V. L. (2012). Determination of the effective thermal conductivity of honeycomb core by the method of electrothermal analogy. Voprosy proektirovaniya i proizvodstva konstruktsii letatel›nykh apparatov. Vol. 2(70), 66—76. [In Russian].
17. Chumachenko E. N., Poljakova T. V., Aksenov S. A. (2009). Mathematical modeling in nonlinear mechanics (Review of software systems for solving problems of modeling complex systems). Moskva,.Institut kosmicheskih issledovanij RAN Publ. 43. [In Russian].
18. Bille M., Robyn K. Practical microsat launch systems: economics and technology. AIAA/USA Conference on Small Satellites. http://digitalcommons.usu.edu.
19. Gaidachuk V. E., Kondratiev A. V., Chesnokov A. V. (2017). Changes in the thermal and dimensional stability of the structure of a polymer composite after carbonization. Mechanics of Composite Materials. Vol. 52, No. 6, 799— 806.
20. Kondratiev A. V., Prontsevych О. O. (2018). Stabilization of physical-mechanical characteristics of honeycomb filler based on the adjustment of technological techniques for its fabrication. EasternEuropean Journal of Enterprise Technologies. Vol 5/1 (95). 71—77.
21. Kondratiev A., Gaidachuk V. (2019) Weight-based optimization of sandwich shelled composite structures with a honeycomb filler. EasternEuropean Journal of Enterprise Technologies. Vol 1/1 (97). 24—33.
22. Mackerle J. (2002). Finite element analyses of sandwich structures: a bibliography (1980–2001). Engineering Computations. No. 19:2. 206—245.
23. Pirk R., Desmet W., Pluymers B., Sas P., Goes Luis C. S. (2002). Vibro-acoustic Analysis of the Brazilian Vehicle Satellite Launcher (VLS) fairing. PROCEEDINGS OF ISMA. Vol. V. 2075—2083.
24. Ranjan Ganguli Optimal Design of Composite Structures: A Historical Review. (2013). Journal of the Indian Institute of Science. No. 93(4). 557—570.
25. Slyvyns’kyy V., Gajdachuk A., Tkachenko G., Kirichenko V., Karpikova O., Verbitskaya N. (2009). Creation of energy-saving technologies of forming articles made of polymeric composite materials. 60th International Astronautical Congress. Daejeon, South Korea. IAC-09. C2.4.9.
26. Slyvyns’kyy V., Gajdachuk V., Gajdachuk А., Slyvyns’ka N. (2005). Weight optimization of honeycomb structures for space applications. 56th International Astronautical Congress. Japan, Fukuoka. IAC-05-C2.3.07. 1—10.
27. Slyvyns’kyy V., Gajdachuk V., Kirichenko V., Kondratiev A. (2012). Basic parameters’ optimization concept for composite nose fairings of launchers (Conference Paper). 62nd International Astronautical Congress, IAC. Cape Town, 3 — 7 October 2011. Red Hook, NY: Curran. Vol. 9. P. 5701– 5710.
28. Slyvyns’kyy V., Slyvyns’kyy M., Polyakov N., Gajdachuk A., Gajdachuk V., Kirichenko V. (2006). New concept for weight optimization of launcher nose firings made of honeycomb structures. 57th International Astronautical Congress. Valencia, Spain. IAC-06-C2.P.1.11. 1—5.
29. Slyvynskyi V. I., Sanin А. F., Kharchenko М. Е., Kondratiev А. V. (2014). Thermally and dimensionally stable structures of carbon-carbon laminated composites for space applications. 65th International Astronautical Congress, Toronto. Canada, 29 September — 3 October 2014. IAC-14,C2,4,11,x21459.
30. Slyvynskyi V. I., Коvаlеnко V. А., Kondratiev А. V., Kharchenko М. Е. (2013). New possibilities in creating of effective composite size-stable honeycomb structures designed for space purposes (Conference Paper). 64th International Astronautical Congress, IAC 2013. Beijing, China, 23—27 September. Red Hook, NY: Curran, Vol. 7., 5643—5655.
31. Smerdov A. A. (2000). A Computational Study in Optimum Formulations of Optimization Problems on Laminated Cylindrical Shells for Buckling. I. Shells under Axial Compression. Composite Science and Technology. No. 60. 2057—2066.
32. Smerdov A. A. (2000). A Computational Study in Optimum Formulations of Optimization Problems on Laminated Cylindrical Shells for Buckling. II. Shells under External Pressure. Composite Science and Technology. No. 60. 2067—2076.
33. Vasiliev V. V., Barynin V. A., Razin A. F. (2012). Anisogrid composite lattice structures. Development and aerospace applications. Composite Structures. No 94. 1117—1127.
34. Webb G. (2008). Is Access to Space Really a Hurdle. 59th International Astronautical Congress. Glasgow, Scotland. IAC-08.B4.5.2.