Ukrainian mission to the Moon: how to and with what

1Shkuratov, Yu.G, 2Konovalenko, AA, 2Zakharenko, VV, 3Stanislavsky, AA, 3Bannikova, EY, 4Kaydash, VG, 4Stankevich, DG, 4Korokhin, VV, 2Vavriv, DM, 2Galushko, VG, 2Yerin, SN, 2Bubnov, IN, 2Tokarsky, PL, 2Ulyanov, OM, 2Stepkin, SV, 2Lytvynenko, LM, 5Yatskiv, Ya.S, 6Videen, G, 7Zarka, P, 8Rucker, HO
1Institute of Astronomy of V. N. Karazin National University of Kharkiv, Kharkiv, Ukraine; Institute of Radio Astronomy of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
2Institute of Radio Astronomy of the National Academy of Science of Ukraine, Kharkiv, Ukraine
3Institute of Radio Astronomy of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine; Institute of Astronomy of V.N. Karazin National University of Kharkiv, Kharkiv, Ukraine
4Institute of Astronomy of V.N. Karazin National University of Kharkiv, Kharkiv, Ukraine
5Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
6Space Science Institute, Boulder, USA
7LESIA, Observatoire de Paris, CNRS, UPMC, Université Paris-Diderot, Paris, France
8Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Space Sci.&Technol. 2018, 24 ;(1):03-30
https://doi.org/10.15407/knit2018.01.003
Section: Astronomy and Astrophysics
Publication Language: Ukrainian
Abstract: 
Ukrainian scientific and technical potential in collaboration with other interested countries allows constructing a spacecraft with the payload for exploration of the Moon. In this paper we consider details of such a mission that includes two parts: 1) orbiter exploration from an elongated orbit with a pericenter over the north pole (100 km above the surface) and the apocenter over the south pole (altitude about 3000 km), and 2) exploration with a lander located on the lunar farside near the south pole in the vicinity of the Braude crater. The lander will contain four dipole antennas for various radio astronomy observations from hundreds of kHz to 40 MHz. The lander panoramic camera equipped with color and polarization filters will provide useful observations of horizon glow due to the electrostatic levitation effect of the lunar dust. A HiRes camera operating in two spectral bands is suggested for mapping structural and mineralogical characteristics of young surface formations. Working in a squint mode, the 3-mm radar will map the Moon surface in radio brightness, characterizing its roughness, to improve the lunar topographic model.
Keywords: brightness map of the surface, horizon glow near the pole, low frequency radio astronomy, lunar dust, phase ratio image, radio emission of astrophysical objects, space missions, stretching mode
References: 
1. Abranin E. P., Bruck Yu. M., Zakharenko V.V., Konovalenko A.A. Structura s parametry novoi sistemy antennogo usilenia radioteleskopa UTR-2 [Structure and parameters of new system of antenna amplification of radio telescope UTR-2]. Radiofizika i radioastronomia, 2 (1), 95—102 (1997) [in Russian].
2. Dorovskyy V. V., Melnyk V. M., Konovalenko A.A., Bubnov I. N., Gridin A.A., Shevchuk N. V., Falkovych I. S., Koval A.A., Rutkevych B. P., Reznik A.P., Rucker H.O., Panchenko M., Belov A. S., Khrystenko A. D., Kvasov G. V., Yerin S. N. Observations of the type U burst in within 10–70 MHz with the GURT radio telescope. Radiofizika i radioastronomia, 18 (2), 101—106 (2013) [in Russian].
3. Konovalenko A. A., Yerin S. M., Bubnov I. M., Tokarsky P. L., Zakharenko V. V., Ulyanov O. M., Sidorchuk M. A., Stepkin S. V., Gridin A. O., Kvasov G. V., Koliadin V. L., Melnik V. M., Dorovskyy V. V., Kalinichenko M. M., Litvinenko G. V., Zarka P., Denis L., Girard J., Rucker H. O., Panchenko M., Stanislavsky A. A., Khristenko O. D., Mukha D. V., Reznichenko O. M., Lisachenko V. M., Bortsov V. V., Brazhenko A. I., Vasylieva I. Y., Skoryk A. O., Shevtsova A. I., Mylostna K. Y. Astrofizicheskie issledovania s pomosch’u malorazmernykh nizkochastotnykh padioteleskopov novogo pokolenia [Astrophysical studies with small low-frequency radio telescopes of new generation]. Radiofizika i radioastronomia, 21 (2), 83—131 (2016) [in Russian].
4. Mylostna K. Y., Zakharenko V. V. Poisk I issledovanie grozovoi aktivnosti na Saturne I drugikh planetakh Solnechnoi sistemy [Search and study of storm activity on Saturn and other planets of the Solar system]. Radiofizika i radioastronomia, 18 (1),12—25 (2013) [in Russian].
5. Mylostna K. Y., Zakharenko V. V., Konovalenko A. A., Fischer G., Zarka P.,Sidorchuk M. A. Tonkaa vremennaa structura molnii na Saturne [Fine time structure of lightnings on Saturn]. Radiofizika i radioastronomia, 19 (1), 10—19 (2014) [in Russian].
6. Shkuratov Y. G., Kislyuk V. S., Lytvynenko L. N., Yatskiv Ya. S. Model of the Moon 2004 for the “Ukrselene” project. Kosm. nauka tehnol., 10(supplement2):03-51 (2004) [in Russian].
7. Abranin E. P., Bruck Yu. M., Zakharenko V. V., Konovalenko A. A. The new preamplification system for the UTR-2 radio telescope. Exp. Astron., 11 (2), 85—112 (2001).
8. Alexander J. K., Kaiser M. L., Novaco J. C., Grena F. R., Weber R. R. Scientific instrumentation of the Radio-Astronomy-Explorer-2 satellite. Astron. and Astrophys., 40, 365—371 (1975).
9. Arnold J. R. Ice in the lunar polar regions. J. Geophys. Res., 84, 5659—5668 (1979).
10. Bass F. G., Fuks I. M. Wave scattering from statistically rough surfaces. (Pergamon Press, Oxford, New York, 1979).
11. Bell M. E., Murphy Tara, Johnston S., Kaplan D. L., Croft S., Hancock P., Callingham J. R., Zic A., Dobie D., Swiggum J. K., Rowlinson A., Hurley-Walker N., Offringa A. R., Bernardi G., Bowman J. D., Briggs F., Cappallo R. J., Deshpande A. A., Gaensler B. M., Greenhill L. J., Hazelton B. J., Johnston-Hollitt M., Lonsdale C. J., McWhirter S. R., Mitchell D. A., Morale M. F.s, Morgan E., Oberoi D., Ord S. M., Prabu T., Shankar N. Udaya, Srivani K. S., Subrahmanyan R., Tingay S. J., Wayth R. B., Webster R. L., Williams A., Williams C. L. Time-domain and spectral properties of pulsars at 154 MHz. Mon. Notic. Roy. Astron. Soc., 461 (1), 908—921 (2016)
12. Bezvesilniy O. O., Dukhopelnykova I. V., Vinogradov V. V., Vavriv D. M. Retrieving 3-D topography by using a single-antenna squint-mode airborne SAR. IEEE Trans. Geosci. Remote Sens., 45 (11), 3574—3582 (2007).
13. Bezvesilniy O. O., Vynogradov V. V., Vavriv D. M. High-accuracy doppler measurements for airborne SAR applications. Proc. 5th European Radar Conf. October 2008. P. 29—32 (Amsterdam, The Netherlands, 2008).  
14. Blewett D. T., Lucey P. G., Hawke B. R., Jolliff B. L. Clementine images of the lunar sample-return stations: refinement of FeO and TiO2 mapping techniques. J. Geophys. Res., 102 (16), 319—325 (1997).
15. Braude S. Ya., Megn A. V., Ryabov B. P., Sharykin N. K., Zhouck I. N. Decametric survey of discrete sources in the Northern sky. I. The UTR-2 Radio Telescope. Experimental techniques and data processing. Astrophys. and Space Sci., 54(1), 3—36 (1978).
16. Burns J. O., Duric N., Taylor G. J., Johnson S. W. Observatories on the Moon. Sci. Amer., 262, 18—25 (1990).
17. Burns R. Mineralogical applications of crystal field theory. (Cambridge Univ. Press, Cambridge, 1993).  
18. Bussey D. B., Spudis P. D., Nozette S., Lichtenberg C. L., Raney R. K., Marinelli W., Winters H .L. Mini-RF: Imaging radars for exploring the lunar poles. Lunar Planet. Sci. Conf. 39th. (LPI Houston, 2008).
19. Cecconi B. Goniopolarimetric techniques for low-frequency radio astronomy in space. Huber M. C. E., Pauluhn A., Culhane J. L., Timothy J. G., Wilhelm K., Zehnder A. (Eds). Observing Photons in Space. ISSI Scientific Reports Ser. P. 263—277 (Springer, 2010).
20. Chertok B. Rockets and people. The Moon Race. NASA SP-2011-4110. (Washington, DC., 2011).
21. Clark R. N. Detection of adsorbed water and hydroxyl on the Moon. Science, 326, 562—564 (2009).
22. Condoleo E., Cinelli M., Ortore E., Circi C. Stable orbits for lunar landing assistance. Adv. Space Res., 60 (7), 1404—1412 (2017).
23. Crawford I., Joy K. Lunar exploration: opening a window into the history and evolution of the inner Solar System. Phil. Trans. Roy. Soc. London A., 372, id. 20130315 (2014).
24. Crawford I. A., Zarnecki J. Astronomy from the Moon. Astron. Geophys., 49, 2.17—2.19 (2008).
25. Crider D. H., Vondrak R. R. The solar wind as a possible source of lunar polar hydrogen deposits. J. Geophys. Res., 105, 26773—26782 (2000).
26. Dessler A. J. Jupiter’s magnetic field and magnetosphere. Dessler. A. J. (Ed). Physics of the Jovian magnetosphere P. 1—50 (Cambridge University Press, Cambridge, 1983).  
27. Dyar M. D., Hibbitts C. A., Orlando T. M. Mechanisms for incorporation of hydrogen in and on terrestrial planetary surfaces. Icarus, 208, 425—437 (2010).
https://doi.org/10.1016/j.icarus.2010.02.014 
28. Evans J. V., Pettengill G. H. The radar cross-section of the Moon. J. Geophys. Res., 68(17), 5098—5099 (1963).
29. Falkovich I. S., Konovalenko A. A., Gridin A. A., Sodin L. G., Bubnov I. N., Kalinichenko N. N., Rashkovskii S. L., Mukha D. V., Tokarsky P. L. Wide-band high linearity active dipole for low frequency radio astronomy. Exp. Astron., 32 (2), 127—145 (2011).
30. Fischman M.A. Sensitivity of a 1.4 GHz Direct-Sampling Digital Radiometer. IEEE Trans. Geoscі. Remote Sens., 37 (5), 2172—2180 (1999).
31. Fisher G., Kurth W. S., Gurnett D. A., Zarka P., Dyudina U. A., Ingersoll A. P., Ewald S. P., Porco C. C., Wesley A., Go C., Delcroix M. A giant thunderstorm on Saturn. Nature, 475 (7354), 75—77 (2011).
32. Freeman J. W., Ibrahim B. Lunar electric fields, surface potential and associated plasma sheets. The Moon, 14, 103—114 (1975).
https://doi.org/10.1007/BF00562976 
33. Furlanetto S. R., Peng O. S., Briggs F. H. Cosmology at low frequencies: The 21 cm transition and the high-redshift Universe. Phys. Repts., 433 (4-6), 181—301 (2006).
34. Garrick-Bethell I., Head J. W., Pieters C. M. Spectral properties, magnetic fields, and dust transport at lunar swirls. Icarus, 212, 480—492 (2011).
https://doi.org/10.1016/j.icarus.2010.11.036
35. Gault D. E., Adams J. B. Collins R. J., Kuiper G. P., O’Keefe J. A., Phinney R. A., Shoemaker E. M. Lunar theory and processes: Post-sunset horizon “Afterglow”. Icarus, 12, 230—232 (1970).
https://doi.org/10.1016/0019-1035(70)90076-X 
36. Gordon M. A., Sorochenko R. L. Radio Recombination Lines: Their Physics and Astronomical Application. (Kluwer Acad. Publ., Dordrecht, 2002).
37. Goswami J. N., Annadurai M. Chandrayaan-1: India’s first planetary science mission to the Moon. Curr. Sci., 96 (4), 486—491 (2009).
38. Guang-You Fang, Bin Zhou, Yi-Cai Ji, Qun-Ying Zhang, Shao-Xiang Shen, Yu-Xi Li, Hong-Fei Guan, Chuan-Jun Tang, Yun-Ze Gao, Wei Lu, Sheng-Bo Ye, Hai-Dong Han, Jin Zheng, Shu-Zhi, Lunar Penetrating Radar onboard the Chang’e-3 mission. Res. Astron. Astrophys., 14 (12), 1607—1622 (2014).
39. Hapke B. Theory of Reflectance and Emittance Spectroscopy. (Cambridge Univ. Press, Cambridge, 1993).
40. Hapke B. Space weathering from Mercury to the asteroid belt. J. Geophys. Res., 106, 10,039—10,073 (2001).
41. Hauria E. Y., Saal A. T., Rutherford M. J., Van Orman J. A. Water in the Moon’s interior: Truth and consequences. Earth and Planet. Sci. Lett., 409, 252—264 (2015).
42. Henyey L. C. Greenstein J. L. Diffuse radiation in the galaxy. Astrophys. J., 93, 70—83 (1941).
43. Horanyi M., Walch B., Robertson S., Alexander D. Electrostatic charging properties of Apollo 17 lunar dust. J. Geophys. Res., 103E (4), 8575—8580 (1998).
44. Howell K. C. Three-dimensional periodic halo orbits. Celest. Mech., 32 (1), 53—71 (1984).
45. Irvine W. M. Multiple scattering by large particles. Astrophys. J., 4, 1563—1575 (1965).
46. Jeong M., Choi Y.-J., Kim S. S., Kang K.-I., Shkuratov Y. G., Kaydash V. G., Videen G., Sim C. K., Kim I.-H., Preliminary Design of Wide-Angle Polarimetric Camera for the First Korean Lunar Mission . 3rd Planetary Data Workshop. LPI Contrib. N 1986 (2017), 7035.pdf.
47. Jester S., Falcke H. Science with a lunar low-frequency array: from the dark ages of the Universe to nearby exoplanets. New Astron. Rev., 53, 1—26 (2009).
48. Jin Weidong, Zhang Hao, Yuan Ye, Yang Yazhou, Lucey Paul, Shkuratov Yuriy, Kaydash Vadim, Zhu Meng-Hua, Xue Bin, Di Kaichang, Wan Wenhui, Xu Bin, Xiao Long, Wang Ziwei. In-situ optical measurements of Chang’E-3 landing site in Mare Imbrium: 2. Photometric properties of the regolith. Geophys. Res. Lett., 42 (20), 8312—8319 (2015).
49. Kaiser M. L. A low-frequency radio survey of the planets with RAE-2. J. Geophys. Res., 82, 1256—1260 (1977).
50. Kaydash V., Shkuratov Y., Korokhin V., Videen G. Photometric anomalies in the Apollo landing sites as seen from the Lunar Reconnaissance Orbiter. Icarus, 211, 89—96 (2011).
https://doi.org/10.1016/j.icarus.2010.08.024 
51. Kaydash V., Shkuratov Y., Videen G., Phase-ratio imagery as a tool of lunar remote sensing. J. Quant. Spectrosc. and Radiat. Transfer., 113 (18), 2601—2607 (2012).
52. Kaydash V., Shkuratov Y., Videen G. Landing of the probes Luna 23 and Luna 24 remains an enigma. Planet. and Space Sci., 89, 172—182 (2013).
53. Kaydash V., Shkuratov Y., Videen G. Dark halos and rays of young lunar craters: A new insight into interpretation. Icarus, 231, 22—33 (2014).
https://doi.org/10.1016/j.icarus.2013.11.025 
54. Keller J. W., Petro N. E., Vondrak R. R., and the LRO team. The Lunar Reconnaissance Orbiter Mission — Six years of science and exploration at the Moon. Icarus, 273, 2—24 (2016).
https://doi.org/10.1016/j.icarus.2015.11.024
55. Konovalenko A. A., Falkovich I. S., Kalinichenko N. N., Gridin A. A., Bubnov I. V., Lecacheux A., Rosolen C., Rucker H. O. Thirty-elements active antenna array as a prototype оf a huge low-frequency radio telescope. Exp. Astron., 16 (3), 149—164 (2003).
56. Konovalenko A. A., Sodin L. G. Neutral 14N in the interstellar medium. Nature, 283, 360—361 (1980).
https://doi.org/10.1038/283360a0 
57. Konovalenko A. A., Sodin L. G. The 26.13 MHz absorption line in the direction of Cassiopeia A. Nature, 294, 135—136 (1981).
https://doi.org/10.1038/294135a0 
58. Konovalenko A., Sodin L., Zakharenko V., Zarka P., Ulyanov O., Sidorchuk M., Stepkin S., Tokarsky P., Melnik V., Kalinichenko N., Stanislavsky A., Koliadin V., Shepelev V., Dorovskyy V., Ryabov V., Koval A., Bubnov I., Yerin S., Gridin A., Kulishenko V., Reznichenko A., Bortsov V., Lisachenko V., Reznik A., Kvasov G., Mukha D., Litvinenko G., Khristenko A., Shevchenko V. V., Shevchenko V. A., Belov A., Rudavin E., Vasylieva I., Miroshnichenko A., Vasilenko N., Olyak M., Mylostna K., Skoryk A., Shevtsova A., Plakhov M., Kravtsov I., Volvach Y., Lytvinenko O., Shevchuk N., Zhouk I., Bovkun V., Antonov A., Vavriv D., Vinogradov V., Kozhin R., Kravtsov A., Bulakh E., Kuzin A., Vasilyev A., Brazhenko A., Vashchishin R., Pylaev O., Koshovyy V., Lozinsky A., Ivantyshin O., Rucker H. O., Panchenko M., Fischer G., Lecacheux A., Denis L., Coffre A., Grieß-Meier J.-M., Tagger M., Girard J., Charrier D., Briand C., Mann G. The modern radio astronomy network in Ukraine: UTR-2, URAN and GURT. Exp. Astron., 42 (1), 11—48 (2016).
59. Konovalenko A. A., Stanislavsky A. A., Rucker H. O., A. Lecacheux, G. Mann, J.-L. Bougeret, M. L. Kaiser, C. Briand, P. Zarka, E. P. Abranin, V. V. Dorovsky, A. A. Koval, V. N. Mel’nik, D. V. Mukha, M. Panchenko et al. Synchronized observations by using the STEREO and the largest ground-based decametre radio telescope. Exp. Astron. Astrophys. Instrument. Methods, 36 (1–2), 137—154 (2013).
60. Konovalenko A.A., Stepkin S.V. Radio recombination lines . In: Radio Astronomy from Karl Jansky to Microjansky. Eds L. Gurvits, S. Frey, S. Rawlings. — Budapest: EAS Publ. Ser., 15, 271—295 (2005).
61. Konovalenko O. O., Tokarsky P. L., Yerin S. N. Effective area of phased antenna array of GURT radio telescope. Proc. of the VII-th Intern. Conf. on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS’14). P. 25—29 (Kharkiv, Ukraine, 2014).
62. Litvinenko G. V., Shaposhnikov V. E., Konovalenko A. A., Zakharenko V. V., Panchenko M., Dorovsky V. V., Brazhenko A. I., Rucker H. O., Vinogradov V. V., Melnik V. N. Quasi-similar decameter emission features appearing in the solar and jovian dynamic spectra. Icarus, 272, 80—87 (2016).
https://doi.org/10.1016/j.icarus.2016.02.039 
63. Liu Y., Park J. S., Schnare D., Hill E., Taylor L. A. Characterization of lunar dust for toxicological studies. II: Texture and shape characteristics. J. Aerospace Eng., 21 (4), 272—279 (2008).
64. Louis C., Lamy L., Zarka P., Cecconi B., Hess S. L. Detection of Jupiter decametric emissions controlled by Europa and Ganymede with Voyager/PRA and Cassini/RPWS. J. Geophys. Res. Space Phys., 122 (9), 9228—9247 (2017).
https://doi.org/10.1002/2016JA023779 
65. Lucey P., Taylor G., Malaret E. Abundance and distribution of iron on the Moon. Science, 268, 1150—1153 (1995).
https://doi.org/10.1126/science.268.5214.1150 
66. Lynn V. L., Sohigian M. D., Crocker E. A. Radar observations of the Moon at a wavelength of 8.6 millimeters. J. Gephys. Res., 69 (4), 781—783 (1964).
https://doi.org/10.1029/JZ069i004p00781 
67. Managadze G. G., Cherepin V. T., Shkuratov Y. G., Kolesnik V. N., Chumikov A. E. Simulating of OH/H2O formation by solar wind at the lunar surface. Icarus, 215 (1), 449—451 (2011).
https://doi.org/10.1016/j.icarus.2011.06.025 
68. McCoy J. E., Criswell D. R. Evidence for a high altitude distribution of lunar dust. Proc. Lunar Sci. Conf. 5th. P. 2991—3005 (LPI Houston, 1974).
69. Mel’nik V. N., Konovalenko A. A., Abranin E. P., Dorovsky V. V., Stanislavsky A. A., Rucker H. O., Lecacheux A. Solar sporadic radio emission in the decametre waveband. Astron. and Astrophys. Trans. 24 (5), 391—401 (2005).
https://doi.org/10.1080/10556790600568854 
70. Mimoun D., Wieczorek M. A., Alkalai L., Banerdt W. B., Baratoux D., Bougeret J.-L., Bouley S., Cecconi B., Falcke H., Flohrer J., Garcia R. F., Grimm R., Grott M., Gurvits L., Jaumann R., Johnson C. L., Knapmeyer M., Kobayashi N., Konovalenko A., Lawrence D., Le Feuvre M., Lognonné Ph., Neal C., Oberst J., Olsen N., Röttgering H., Spohn T., Vennerstrom S., Woan Gr., Zarka Ph. Farside explorer: unique science from a mission to the farside of the moon. Exp. Astron., 33 (2-3), 529—585 (2012).
https://doi.org/10.1007/s10686-011-9252-3 
71. Mitrofanov I. G., Zelenyi L. M., Tret’yakov V. I. Upgraded program of Russian lunar landers: studying of lunar poles. Proc. Annual Meeting of the Lunar Exploration Analysis Group. N 1685, P. 3025 (LPI Contrib., 2012).
72. Ono T., Oya H. Lunar Radar Sounder (LRS) experiment on-board the SELENE spacecraft. Earth, Planets and Space,  52, 629—637 (2000).
https://doi.org/10.1186/BF03351671 
73. Park J. S., Liu Y., Kihm K. D., Taylor L. A. Characterization of lunar dust for toxicological studies. I: Particle size distribution. J. Aerospace Eng., 21 (4), 266—271 (2008).
https://doi.org/10.1061/(ASCE)0893-1321(2008)21:4(266)
74. Petrov D., Shkuratov Y., Videen G. Analytical light-scattering solution for Chebyshev particles. J. Opt. Soc. Amer., A24 (4), 1103—1119 (2007).
https://doi.org/10.1364/JOSAA.24.001103
75. Petrov D., Shkuratov Y., Videen G. Electromagnetic wave scattering from particles of arbitrary shapes. J. Quant. Spectrosc. and Radiat. Transfer., 112 (11), 1636—1645 (2011).
https://doi.org/10.1016/j.jqsrt.2011.01.036
76. Pieters C. M., Goswami J. N., Clark R. N., and the M3 Science Team. Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1. Science, 326, 568 —572 (2009).
https://doi.org/10.1126/science.1178658
77. Pieters C., Shkuratov Y., Kaydash V., Stankevich D., Taylor L. Lunar soil characterization consortium analyses: pyroxene and maturity estimates derived from Clementine image data. Icarus, 184, 83—101 (2006).
https://doi.org/10.1016/j.icarus.2006.04.013
78. Pinet P. C., Shevchenko V. V., Chevrel S. D., Daydou Y., Rosemberg C. Local and regional lunar regolith characteristics at Reiner Gamma Formation: Optical and spectroscopic properties from Clementine and Earth-based data. J. Geophys. Res. Planets, 105E (4), 9457—9475 (2000).
https://doi.org/10.1029/1999JE001086
79. Pritchard J. R., Loeb A. Constraining the unexplored period between the dark ages and reionization with observations of the global 21 cm signal. Phys. Rev. D-Part. and Fields, 82, 023006 (2010).
https://doi.org/10.1103/PhysRevD.82.023006
80. Popel S. I., Zelenyi L. M. Dusty plasmas over the Moon. J. Plasma Phys., 80 (6), 885—893 (2014).
https://doi.org/10.1017/S0022377814000828
81. Rennilson J. J., Criswell D. R. Surveyor observations of lunar horizon-glow. The Moon, 10, 121—142 (1974).
https://doi.org/10.1007/BF00655715
82. Robinson M. S., Brylow S. M., Tschimmel M., Humm D., Lawrence S. J., Thomas P. C., Denevi B. W., Bowman-Cisneros E., Zerr J., Ravine M. A., Caplinger M. A., Ghaemi F. T., Schaffner J. A., Malin M. C., Mahanti P., Bartels A., Anderson J., Tran T. N., Eliason E. M., McEwen A. S., Turtle E., Jolliff B. L., Hiesinger H. Lunar Reconnaissance Orbiter Camera (LROC) instrument overview. Space Sci. Rev., 150, 81—124 (2010).
https://doi.org/10.1007/s11214-010-9634-2
83. Ryabov V. B., Vavriv D. M., Zarka P., Ryabov B. P., Kozhin R., Vinogradov V. V., Denis L. A low-noise, high-dynamic-range, digital receiver for radio astronomy applications: an efficient solution for observing radio-bursts from Jupiter, the Sun, pulsars, and other astrophysical plasmas below 30 MHz. Astron. and Astrophys., 510, id. A16 (2010).
84. Ryabov V. B., Zarka P., Hess S., Konovalenko A., Litvinenko G., Zakharenko V., Shevchenko V. A, Cecconi B. Fast and slow frequency-drifting millisecond bursts in Jovian decametric radio emissions. Astron. and Astrophys., 568, id. A53 (2014).
85. Schmitt H. H. Return to the Moon: Exploration, Enterprise, and Energy in the Human Settlement of Space (Springer-Verlag, Copernicus books, NY, 2006).
86. Scolnik M. I. Radar Handbook (McGraw-Hill Book Company, New York, 1989).
87. Severny A. B., Terez E. I., Zvereva A. M. The measurements of sky brightness on Lunokhod-2. The Moon, 14, 123—128 (1975).
88. Shkuratov Y., Starukhina L., Kreslavsky M., Opanasenko N., Stankevich D., Shevchenko V. Principle of perturbation invariance in photometry of atmosphereless celestial bodies. Icarus, 109, 168—190 (1994).
https://doi.org/10.1006/icar.1994.1084
89. Shkuratov Y., Lytvynenko L., Shulga V., Yatskiv Y., Vidmachenko A., Kislyuk V., Objectives of a prospective Ukrainian orbiter mission to the moon. Adv. Space Res., 31 (11), 2341—2345 (2003).
https://doi.org/10.1016/S0273-1177(03)00534-9
90. Shin-ichi Sobue, Hayato Okumura, Susumu Sasaki, Manabu Kato, Hironori Maejima, Hiroyuki Minamino, Satoru Nakazawa, Hisashi Otake, Naoki Tateno, Hisashi Konishi, Katsuhide Yonekura, Hoshino Hirokazu, Jun Kimura. The project highlight of Japan’s Lunar Explorer Kaguya (SELENE).  Lunar Planet. Sci. Conf. 40th. ( LPI Houston, 2009) 1224.pdf.
91. Shkuratov Y., Kaydash V., Korokhin V., Velokodsky Y., Opanasenko N., Videen G. Optical measurements of the Moon as a tool to study its surface. Planet. and Space Sci., 59, 1326—1371 (2011).
https://doi.org/10.1016/j.pss.2011.06.011
92. Shkuratov Y., Kaydash V., Sysolyatina X., Razim A., Videen G. Lunar surface traces of engine jets of Soviet sample return probes: the enigma of the Luna-23 and Luna-24 landing sites. Planet. and Space Sci., 75, 28—36 (2013).
https://doi.org/10.1016/j.pss.2012.10.016
93. Shkuratov Y., Kaydash V., Videen G. The crater Giordano Bruno as seen with optical roughness imagery. Icarus, 218 (1), 525—533 (2012).
https://doi.org/10.1016/j.icarus.2011.12.023
94. Shkuratov Y. G., Stankevich D. G., Petrov D. V., Pinet P .C., Cord A. M., Daydou Y. H. Interpreting photometry of regolith-like surfaces with different topographies: shadowing and multiple scatter. Icarus, 173, 3—15 (2005).
https://doi.org/10.1016/j.icarus.2003.12.017
95. Stanislavsky A., Konovalenko A., Rucker H., Abranin E., Kaiser M., Dorovskyy V., Mel’nik V., Lecacheux A. Antenna performance analysis for decameter solar radio observations. Astron. Nachr., 330, 691—697 (2009).
96. Stankevich D., Shkuratov Y. Monte Carlo ray-tracing simulation of light scattering in particulate media with optically contrast structure. J. Quant. Spectrosc. and Radiat. Transfer., 87 (3-4), 289—296 (2004).
97. Starukhina L. V., Shkuratov Y. G., The lunar poles: water ice or chemically trapped hydrogen? Icarus, 147, 585—587 (2000).
https://doi.org/10.1007/BF00562978
98. Starukhina L. V., Shkuratov Y. G. Swirls on the Moon and Mercury: meteoroid swarm encounters as a formation mechanism. Icarus, 167 (1), 136—147 (2004).
https://doi.org/10.1016/j.icarus.2003.08.022
99. Stepkin S. V., Konovalenko A. A., Kantharia N. G., Udaya Shankar N. Radio recombination lines from the largest bound atoms in space. Mon. Notic. Roy. Astron. Soc., 374 (3), 852—856 (2007).
https://doi.org/10.1111/j.1365-2966.2006.11190.x
100. Stubbs T., Vondrak R., Farrell W. A Dynamic fountain model for lunar dust. Lunar Planet. Sci., 36 (2005). — Retrieved from http://www.lpi.usra. edu/meetings/ lpsc2005/pdf/1899.pdf.
101. Sun Huixian, Wu Ji, Dai Shuwu, Zhao Baochang, Shu Rong, Chang Jin, Wang Huanyu, Zhang Xiaohui, Ren Qiongying, Chen Xiaomin, Ouyang Ziyuan, Zou Yongliao. Introduction to the payloads and the initial observation results of Chang’E-1. Chin. J. Space Sci. 28 (5), 374—384 (2008).
102. Sunshine J. M., Farnham T. L., Feaga L. M., Groussin O., Merlin F., Milliken R. E., A’Hearn M. F. Temporal and spatial variability of lunar hydration as observed by the Deep Impact Spacecraft. Science 326, 565—568 (2009).
https://doi.org/10.1126/science.1179788
103. Taylor L. Helium-3 on the Moon: model assumptions and abundances. Eng. Constr. and Operations in Space IV, ASCE Publication, Proceedings of Space, 94, 678—686 (1994).
104. Tokarsky P. L., Konovalenko A. A., Yerin S. N. Sensitivity of an active antenna array element for the low-frequency radio telescope GURT. IEEE Trans. on Antennas and Propag., 65 (9), 4636—4644 (2017).
https://doi.org/10.1109/TAP.2017.2730238
105. Ulyanov O. M., Shevtsova A. I., Seredkina A. A. Polarization sounding of the pulsar magnetosphere. Proc. of the International Astronomical Union, 8 (S291), 530—532 (2012).
https://doi.org/10.1017/S1743921312024763
106. Ulyanov O. M., Zakharenko V. V., Konovalenko A. A., Lecacheux A., Rosole C., Rucker H. O. Detection of individual pulses from pulsars B0809+ 74; B0834+ 06; B0950+ 08; B0943+ 10; B1133+ 16 in the decameter waves range. Radio Phys. and Radio Astron., 11, 113—133 (2006).
107. Vaniman D., French B., Heiken G. Afterword. Lunar Sourcebook. Heiken G. H., Vaniman D. T., French B. M. (Eds).  P. 633—641 (Chapter 11) (Cambridge University Press, NY, 1991).
108. Vasilyev O. Y., Kuzin A. I., Kravtsov A. A., Bulakh E. V., Vynogradov V. V., Vavriv D.M. Multifunctional digital receiver-spectrometer. Radio Phys. and Radio Astron., 19 (3), 276—289 (2014).
https://doi.org/10.15407/rpra19.03.276
109. Vondrak R., Keller J., Russell C. (Eds) Lunar Reconnaissance Orbiter Mission (Springer, NY, 2010).  
https://doi.org/10.1007/978-1-4419-6391-8
110. Walmsley C. M., Watson W. D. The influence of dielectronic-like recombination at low temperatures on the interpretation of interstellar, radio recombination lines of carbon. Astrophys. J., 260, 317—325 (1982).
https://doi.org/10.1086/160256
111. Wittenberg L., Santarius J., Kulchinski G. Lunar source of 3He for fusion power. Fusion Technol., 10, 167—178 (1986).
https://doi.org/10.13182/FST86-A24972
112. Yan Su, Guang-You Fang, Jian-Qing Feng, Shu-Guo Xing, Yi-Cai Ji, Bin Zhou, Yun-Ze Gao, Han Li, Shun Dai, Yuan Xiao and Chun-Lai Li Data processing and initial results of Chang’e-3 lunar penetrating radar. Res. Astron. Astrophys., 14 (12), 1623—1632 (2014).
https://doi.org/10.1088/1674-4527/14/12/010
113. Yocky D. A., Wahl D. E., Jakowarz C. V. (Jr.) Terrain elevation mapping results from airborne spotlight-mode coherent cross-track SAR stereo. IEEE Trans. Geosci. and Remote Sens., 42, 301—308 (2004).
https://doi.org/10.1109/TGRS.2003.817683
114. Zakharenko V. V. Sporadic radio emissions from celestial sources: studies at decameter wavelengths. Radio Phys. and Radio Astron., 2 (4), 287—298 (2011).
https://doi.org/10.1615/RadioPhysicsRadioAstronomy.v2.i4.10
115. Zakharenko V., Konovalenko A., Zarka P., Ulyanov O., Sidorchuk M., Stepkin S., Koliadin V., Kalinichenko N., Stanislavsky A., Dorovsky V., Shepelev V. Digital receivers for low-frequency radio telescopes UTR-2, URAN, GURT. J. Astron. Instrument., 5 (04), id.1641010 (2016).
116. Zakharenko V. V., Mylostna K. Y., Fischer G., Konovalenko A. A., Zarka P., Grießmeier J.-M., Ryabov B. P., Vavriv D. M., Ryabov V. B., Rucker, H., Ravier P., Sidorchuk M. A., Cecconi, B., Coffre A., Denis L., Fabrice C., Kozhyn R. V., Mukha D. V., Pallier L., Schneider J., Shevchenko V. A., Vinogradov V. V., Weber R., Nikolaenko V. S. Identification of Saturn lightings recorded by the UTR-2 radio telescope and Cassini spacecraft. Radio Phys. and Radio Astron., 2(2), 93—98 (2011).
https://doi.org/10.1615/RadioPhysicsRadioAstronomy.v2.i2.10
117. Zakharenko V., Mylostna K., Konovalenko A., Kolyadin V., Zarka P., Grießmeier J.-M., Litvinenko G., Sidorchuk M., Rucker H., Fischer G., Cecconi B., Coffre A., Denis L., Shevchenko V., Nikolaenko V. Search and study of electrostatic discharges in the Solar System with the radio telescope UTR-2. Europ. Planet. Sci. Congress, 23—28 September 2012. Madrid, Spain., id. EPSC2012-186 (2012). — Retrieved from http://meetings.copernicus.org/ epsc2012.
118. Zakharenko V. V., Nikolaenko V. S., Ulyanov O. M., Motiyenko R. A. A high time resolution receiver for radio emission investigation. Radio Phys. and Radio Astron., 12 (3), 233—242 (2007).
119. Zakharenko V. V., Vasylieva I. Y., Konovalenko A. A., Ulyanov O. M., Serylak M., Zarka P., Grießmeier J. M., Cognard I., Nikolaenko V. S. Detection of decametre-wavelength pulsed radio emission of 40 known pulsars. Mon. Notic. Roy. Astron. Soc., 431 (4), 3624—3641 (2013).
https://doi.org/10.1093/mnras/stt470 
120. Zarka P., Bougeret J.-L., Briand C., Cecconi B., Falcke H., Girard J., Grießmeier J.-M., Hess S., Klein-Wolt M., Konovalenko A., Lamy L., Mimoun D., Aminaei A. Planetary and exoplanetary low frequency radio observations from the Moon. Planet. Space Sci., 74, 156—166 (2012).
https://doi.org/10.1016/j.pss.2012.08.004
121. Zebker H. A., Goldstein R. M. Topographic mapping from interferometric SAR observations. J. Geophys. Res., 91B(5), 4993—4999 (1986).
https://doi.org/10.1029/JB091iB05p04993
122. Zhang Hao, Yang Yazhou, Jin Weidong, Yuan Ye, Lucey Paul, Zhu Meng-Hua, Kaydash Vadim, Shkuratov Yuriy, Di Kaichang, Wan Wenhui, Xu Bin, Xiao Long, Wang Ziwei, Xue Bin. In-situ optical measurements of Chang’E-3 landing site in Mare Imbrium: 1. Mineral abundances inferred from spectral reflectance. Geophys. Res. Lett., 42 (17), 6945—6950 (2015).
https://doi.org/10.1002/2015GL065273
123. Zook H., Potter A., Cooper B. The lunar dust exosphere and Clementine lunar horizon glow. Lunar Planet. Sci., 26, 1577—1578 (1995).
124. Zubko E., Shkuratov Yu., Kiselev N., Videen G. DDA simulations of light scattering by small irregular particles with various structure. J. Quant. Spectrosc. and Radiat. Transfer., 101, 416—434 (2006).
https://doi.org/10.1016/j.jqsrt.2006.02.055
125. Zubko E., Shkuratov Yu., Mishchenko M., Videen G. Light scattering in a finite multi-particle system. J. Quant. Spectrosc. and Radiat. Transfer., 109, 2195—2206 (2008).
https://doi.org/10.1016/j.jqsrt.2008.03.007
126. Zubko E., Weinberger A., Zubko N., Shkuratov Y., Videen G. Umov effect in single-scattering dust particles: Effect of irregular shape. Opt. Lett., 42 (10), 1962—1965 (2017).
https://doi.org/10.1364/OL.42.001962