The analysis of interaction model of electrodynamic tether systems with the Earth’s magnetosphere and an ionosphere

1Mischenko, AV, 2Pirozhenko, AV
1Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipropetrovsk, Ukraine
2Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipro, Ukraine
Kosm. nauka tehnol. 2011, 17 ;(4):05-13
https://doi.org/10.15407/knit2011.04.005
Publication Language: Russian
Abstract: 
The model of interaction of electrodynamic space tether systems (EDSTS) with the Earth’s ionosphere and magnetosphere is analyzed. The features of the equation solution of the model and their dependence on boundary conditions on the cable extremities are considered. Some questions relative to the simulation of the influence of additional contactors on current voltage characteristics of the EDSTS are discussed. Some problems of the further examinations are considered.
Keywords: ionosphere, magnetosphere, simulation, tether systems
References: 
1. Alpatov A. P., Grebenkin F. N., Mishchenko A. V., Pirozhenko A. V. Electrodynamic wire rope system of space vehicles with orbits: research on nanosatellites. Visnik Dnipropetr. un-tu, No. 2/2, 5—10 (2006) [in Russian].
2. Beletskii V. V., Levin E. M. Dynamics of tethered space systems, 329 p. (Nauka, Moscow, 1990) [in Russian].
3. Boid R. Lengmyur’s probes by the spaceship. In: Plasma research methods, Ed. by W. Lochte-Holtgrewen, 506—538 (Mir, Moscow, 1971) [in Russian].
4. Brjunelli B. E., Namgaladze A. A. Ionospheric physics, 527 p. (Nauka, Moscow, 1988) [in Russian].
5. Model of global distribution of concentration, temperature and effective collision frequency of electrons: HOST 25645.146-89 from 21st November 1989, 825 p. (Moscow, 1989) [in Russian].
6. Kozlov O. V. Plasma electric probe, 291 p. (Atomizdat, Moscow, 1969) [in  Russian].
7. Maslova A. I., Pirozhenko A. V. Spatial motion of the spacecraft relative to the center of mass taking into account the variability of the aerodynamic moment. Tekhicheskaya Mekhanika, No. 3, 51—62 (2010) [in Russian].
8. Mishchenko A. V., Pirozhenko A. V., Shuvalov V. A. Interaction of the electrodynamic space cable system with ionospheric plasma. Visnik Dnipropetr. un-tu, No. 9/2, 190—196 (2007) [in Russian].
9. Prigogine I. Introduction to Thermodynamics of Irreversible Processes, 160 p. (NIC «Reguljarnaja i haoticheskaja dinamika», Izhevsk, 2001) [in Russian].
10. Duboshin G. N. (Ed.) Reference Manual on Celestial Mechanics and Astrodynamics, 862 p. (Nauka, Moscow, 1976) [in Russian].
11. Tamm I. E. Fundamentals of the theory of electricity, 137—151 (Nauka, Moscow, 1989) [in Russian].
12. Shott L. Electrical probes. In:  Plasma Diagnostics, Ed.by W. Lochte-Holtgreven,  P.459—505. (Mir, Moscow, 1971) [in Russian].
13. Ahedo E., Sanmartin J. R. Analysis of bare-tether systems for deorbiting low-earth-orbit satellites. J. Spacecraft and Rockets, 39 (2), 198—205 (2002).
https://doi.org/10.2514/2.3820
14. Alpatov A. P., Beletsky V. V., Dranovskii V. I., et al. Dynamics of tethered space systems, 223 p. (CRC Press, Boca Raton, London, New York, 2010).
https://doi.org/10.1201/9781439836866
15. Carroll J. A. Space transport development using orbital debris. Final Report on NIAC Phase I. Research Grant N 07600-087, 1—43 (2002).
16. Estes R. D., Lorenzini E. C., Sanmartin J., et al. Bare tethers for electrodynamic spacecraft propulsion. J. Spacecraft and Rockets, 37, 205—211 (2000).
https://doi.org/10.2514/2.3567
17. Estes R. D., Sanmartin J. R. Cylindrical Langmuir probes beyond the orbital-motion-limited regime. J. Phys. Plasmas, 7 (10), 4320—4325 (2000).
https://doi.org/10.1063/1.1288400
18. Fujii H. A., et al. Sounding rocket experiment of bare elec-trodynamic tether system. J. Acta Astronautica, 64 (2–3), 313—324 (2009).
https://doi.org/10.1016/j.actaastro.2008.07.006
19. Hoyt R. P., Barnes I. M., Voronka N. R., Slostad J. T. The Terminator Tape™: A cost-effective de-orbit module for end-of-life disposal of LEO satellites. Space 2009 Conference. AIAA Paper 2009-6733, 1—9 (2009).
20. Johnson L., Carroll J., Estes R. D., et al. Electrodynamic tethers for reboost of the international space station and spacecraft propulsion. AIAA Paper 96-4250, 7 p. (1996).
https://doi.org/10.2514/6.1996-4250
21. Levin E. M. Dynamic analysis of space tether missions, 453 p. (American Astronautical Soc., San Diego, 2007).
22. Lorenzini E. C., Cosmo M. L. Tethers in space handbook, 3rd edition, 241 p. (Smithsonian Astrophys. Observatory, 1997).
23. McCoy J. E., et al. Plasma motor-generator (PMG) flight experiment results. Fourth International Conference on Tether in Space, Washington, 10—14 April, 1995, 57—85 (Washington, 1995).
24. Samanta Roy R. I., Hastings D. E., Ahedo E. System analysis of electrodynamic tethers. J. Spacecraft and Rockets, 29 (3), 415—424 (1992).
https://doi.org/10.2514/3.26366
25. Sanjurjo Rivo M. Self balanced bare electrodynamic tethers. Space debris mitigation and other applications: tesis doctoral N 1839, 215 c. (Madrid, 2009).
26. Sanmartin J. R., Martinez-Sanchez M., Ahedo E. Bare Wire Anodes for Electrodynamic Tethers. J. Propulsion and Power, 9 (3), 353—360 (1993).
https://doi.org/10.2514/3.23629

27. Tortora P., Somenzi L., Iess L., Licata R. Small mission design for testing in-orbit an electrodynamic tether deor-biting system. J. Spacecraft and Rockets, 43 (4), 883—892 (2006).
https://doi.org/10.2514/1.15359