Monitoring of the besieged water vapor on the basis of the processing of GNSS data

1Kablak, NI
1Uzhhorod National University, Uzhgorod, Ukraine
Kosm. nauka tehnol. 2011, 17 ;(4):65-73
https://doi.org/10.15407/knit2011.04.065
Section: Space Geoinformatics and Geodesy
Publication Language: Ukrainian
Abstract: 
Zenith wet delay estimates derived from the analysis of GPS observations are used for operative weather forecasting and climate-change modelling. On the basis of these estimates, besieged water vapor values are determined for meteorology needs. We give some values of besieged water vapor which are derived from GNSS data processing and from results of aerologic sounding of the atmosphere.
Keywords: climate-change modelling, monitoring, weather forecasting
References: 
1. Hofmann-Wellenhof B., Lichtenegger H., and Collins J. Global Positioning System. Theory and Practice, Transl. from Eng., Ed. by Ya. S. Yatskiv, 376 p. (Nauk.dumka, Kyiv, 1996) [in Ukrainian].
2. Kablak N. I., Klimyk V. U., Shvalagin I. V., Kablak U. I. Monitoring of the besieged water vapour with the help of GPS for weather prediction. Kosm. nauka tehnol., 10 (5-6), 163—166 (2004) [in Ukrainian].
3. Kablak N. I., Zhyhuts Yu. Yu. Method for determination of fall water steam in atmosphere. Pat. 49670 Ukraine, MPK Y04B 10/00; published 11.05.2010, Bull. No. 9 [in Ukrainian].
4. Davis J. L., Herring T. A., Shapiro I. I. Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio Sci., 20 (6), 1593—1607 (1985).
https://doi.org/10.1029/RS020i006p01593
5. Devis M., Businger S., Herring T. A., et al. GPS Meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System. J. Geophys. Res., 97, 15787—15801 (1992).
https://doi.org/10.1029/92JD01517
6. Elgered G., Plag H. P., Van der Marel H. Exploitation of groundbased GPS for operational numerical weather prediction and climate applications, 234 p. (EC/COST, EUR, 2005).
7. Herring T. A., Anthes R. A., Ware R. H. GPS Metrology: Remote sensing of atmospheric water vapor using the GPS. J. Geophys. Res., 97, 15787— 15801 (1992).
https://doi.org/10.1029/92JD01517
8. Mendes V. B., Langley R. B. Tropospheric zenith delay prediction accuracy for airborne GPS high-precision positioning. Proc. The Institute of Navigation 54th Annual Meeting, Denver, CO, U.S.A., 1—3 June 1998, 337—347 (Denver, 1998).
9. Niell A. E. Global mapping functions for the atmosphere delay at radio wavelengths. J. Geophys. Res., 101B (2), 3227—3246 (1996).
https://doi.org/10.1029/95JB03048
10. Niell A. E. Preliminary evaluation of atmospheric mapping functions based on numerical weather models. Phys. and Chemistry of the Earth, 26, 475— 480 (2001).
https://doi.org/10.1016/S1464-1895(01)00087-4
11. Savchuk S., Kalynych I., Prodanets I. Creation of ZAK-POS active network reference stations for Transcarphatian region of Ukraine. (Berlin, 2008).
12. Saastamoinen I. I. Contribution to the theory of atmospheric refraction. Bull. Gėodėsique, 107, 13—34 (1973).
13. SonotaCo A meteor shower catalog based on video observations in 2007—2008. WGN, J. IMO, 37 (2), P. 55 (2009).
14. Svoren J., Porubcan V., Neslusan L. Current Status of the photographic meteoroid orbits database and a call for contributions to a new version. Earth, Moon, and Planets, 102 (1-4), 11—14 (2008).
https://doi.org/10.1007/s11038-007-9167-1

15. Ueda M., Fujiwara Y., Sugimoto M., Kinoshita M. Results of double-station TV observations during 1998 and 1999. Proc. Int. Conf. Meteoroids 2001, Ed. by B. Warmbein, 325—330 (Kiruna, Sweden, 2001).