Response of the authors to the commentary by G.V. Lizunov on our paper “Spatio-temporal dynamics of traveling ionospheric disturbances”

1Fedorenko, Yu.P
1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
Space Science and Technology 2017, 23 ;(2):52-67
https://doi.org/10.15407/knit2017.02.052
Section: Space and Atmospheric Physics
Publication Language: Russian
Abstract: 
A detailed analysis of G. V. Lizunov’s remarks concerning our article "Spatio-temporal dynamics of travelling ionospheric disturbances" published in "Space Science and Technology".— 2016. — 22, No. 5 is presented. We show that the remarks are deeply mistaken. The key stages of experimental and theoretical studies, which allow us to propose the radically new approach to the simulation of the origination and propagation of travelling ionospheric disturbances (TID), are presented. We have proved theoretically and experimentally that acousticgravity waves (AGW) can propagate at ionospheric heights with velocities several times higher than the sound velocity. Relative TID amplitudes can often be in the range from 40 to 100 %.
References: 
   Afraimovich E. L., Bashkuev Yu. B., Bernhardt O. I., et al. Detection of the parameters of travelling ionospheric disturbances obtained by using data of simultaneous measurements of the electron concentration, total electron content, and Doppler frequency shift obtained at the radiofysical complex of the ISTF. Geomagnetizm i aeronomiya, 44 (4), 463—475 (2004).
   Afraimovich E. L., Voeikov S. V., Tatarinov P. V. Experimental proof of a single internal gravitational wave in Earth's atmosphere during powerful magnetic storm on October 30, 2003. Proceedings of the VII Session of Young Scientists. Section "Remote sensing ...", BShFF-2004, 51—53 (2004).
   Afraimovich E. L., Voeikov S. V., Ratovsky K. G., et al. GPSdetection of solitude internal waves generated during powerful magnetic storms. In collection of reports of 21 All-Russian Scientific Conference. "Propagation of radio waves", May 25—27, 2005, Yohshkar-Ola, 1, 124—128 (2005).
   Alabasterov V. A., Maltsev A. T., Troitsky B. V. Perturbations in the ionosphere caused by a ground explosion. Phys. Earth, N 11, 55—60 (1985).
   Dictionary of the Russian language, vol. 1, 699 p. (Russkiy yazyk, Moscow, 1985) [in Russian].
   Gershman B. N. The dynamics of the ionospheric plasma, 256 p. (Nauka, Moscow, 1974) [in Russian].
   Chernogor L. F. Fluctuations of the geomagnetic field caused by the passage of the Vitim bolide on September 24, 2002. Geomagnetizm i aeronomiya, 51 (1), 119—132 (2011).
   Fedorenko Yu. P. Excitation of PC5 terrestrial geomagnetic pulsations by acoustic gravity waves. Kosm. nauka tehnol., 23(3): 11-37 (2017). 
https://doi.org/10.15407/knit2017.03.011
  Yasyukevich Yu. V., Zakharov V. I., Kunitsyn V. Е., et al. The response of the ionosphere to the earthquake in Japan on March 11, 2011, according to various GPS methods. Geomagnetizm i aeronomiya, 55 (1), 113—122 (2015).
   Yasyukevich Yu. V., Perevalova N. P., Voeikov S. V., et al. Earthquake in Japan March 11, 2011 as a source of ionospheric disturbances. Modern geodynamics of Central Asia and dangerous natural processes: results of studies on a quantitative basis. Siberian Branch of RAS. Institute of the Earth's Crust. Materials of the All-Russian Conference and Youth School (September 23—29, 2012) Irkutsk, 2, 204—208 (2012)
.  Perevalova N. P. Investigation of ionospheric disturbances by a method of transionospheric GPS sounding. Thesis for the degree of Doctor of Physical and Mathematical Sciences. Specialty 25.00.29 — Physics of the atmosphere and hydrosphere. Institute of Solar-Terrestrial Physics of the Siberian Branch of the Russian Academy of Sciences. Irkutsk, 286 p. (2014).
   Perevalova N. P., Voeikov S. V., Yasyukevich Yu. V., et al. The study of ionospheric disturbances caused by the earthquake in Japan on March 11, 2011 by using data of the GEONET network. Sovr. Probl. DZZ Kosm., 9 (3), 172—180 (2012).
   Perevalova N. P., Shestakov N. V., Voeikov S. V., et al. Study of the propagation of ionospheric disturbances caused by the Tohoku earthquake in far zone of its center. Modern problems of remote Earth sensing from Space, 13 (1), 186— 196 (2016).
   Bristow W. A. and Greenwald R. A. Estimating gravity wave parameters from oblique high frequency backscatter: Modeling and analysis. J. Geophys. Res., 100(A3), 3639— 3648 (1995)
https://doi.org/10.1029/94JA02704.
   Chen C. H., Saito A., Lin C. H., et al. Long-distance propagation of ionospheric disturbance generated by the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space, 63, 881—884 (2011)
.https://doi.org/10.5047/eps.2011.06.026
   Choi B. K., Lee S. J., Yoon H. S. Ionospheric TEC Disturbances over South Korea Following the 2011 Great Tohoku Earthquake. Research Inventy. Int. J. Eng. Sci., 6 (6), P 35—42 Issn (e): 2278—4721, Issn (p):2319-6483 (2016), www.researchinventy.com.
   Daniels F. B., Bauer S. J., Harris A. K. Vertically traveling shock waves in the ionosphere. J. Geophys. Res., 65, 1848—1859 (1960).
https://doi.org/10.1029/JZ065i006p01848
   Galvan D. A., Komjathy A., Hickey M. P., et al. Ionospheric signatures of Tohoku-Oki tsunami of March 11, 2011: model comparisons near the epicenter. Radio Sci., 47 (4), (2012) RS4003 
https://doi.org/10.1029/2012RS005023
   Heki K., Otsuka Y., Choosakul N., et al. Detection of ruptures of Andaman fault segments in the 2004 great Sumatra earthquake with coseismic ionospheric disturbances. J. Geophys. Res., 111, (2006) B09313. 
https://doi.org/10.1029/2005JB004202
   Jin S., Jin R., Li J. H. Pattern and evolution of seismoionospheric disturbances following the 2011 Tohoku earthquakes from GPS observations. J. Geophys. Res.: Space Phys., (2014). 10.1002/2014JA019825.
   Jin S., Occhipinti G., Jin R. GNSS ionospheric seismology: Recent observation evidences and characteristics. EarthSci. Revs, 147, 54—64 (2015).
https://doi.org/10.1016/j.earscirev.2015.05.003
   Kohl W. Acoustic gravity waves caused by the nuclear explosion on October 30th 1961. Proc. NATO Advanced Study Inst., Skeikampen, Norway. — 1963. — P. 160— 169, North-Holland Publishing Company, Amsterdam, 1964.
   Nishitani N., Ogawa T., Otsuka Y., et al. Propagation of large amplitude ionospheric disturbances with velocity dispersion observed by the SuperDARN Hokkaido radar after the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space, 63, 891—896 (2011).
https://doi.org/10.5047/eps.2011.07.003
   Occhipinti G., Rolland L., Lognonné P., et al. From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes. J. Geophys. Res.: Space Phys., 118, 1—11 (2013), 
https://doi.org/10.1002/jgra.50322
   Pradipta R., Valladares C. E., Doherty P. H. GPS observation of continent-size traveling TEC pulsations at the start of geomagnetic storms. J. Geophys. Res.: Space Phys., 119 (8), 875—879 (2014). AGU PUBLICATION 2014. P. 6913— 6924 
https://doi.org/10.1002/2014JA020177
   Rolland L. M., Lognonné P., Astafyeva E., et al. The resonant response of the ionosphere imaged after the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space, 63 (7), 853—857 (2011)
.https://doi.org/10.5047/eps.2011.06.020
   Stoffregen W. Ionosperic effects observed in connection with nuclear explosions at Novaya Zemlya on October 23 and 30, 1961, as Res. Inst. Natl. Defense, Stockholm, Sweden, FOAS, Rapport A517, 1962.
   Tsugawa T., Saito A., Otsuka Y., et al. Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space, 63 (7), 875—879 (2011). doi:10.5047/eps.