Dynamic effect of a plasma beam on a space debris object

1Shuvalov, VA, 1Gorev, NB, 1Tokmak, NA, 1Pismennyi, NI, 2Osinovyj, GG
1Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipro
2Yangel Yuzhnoye State Design Office, Dnipropetrovsk
Kosm. nauka tehnol. 2017, 23 ;(1):36-49
https://doi.org/10.15407/knit2017.01.036
Section: Space Environment Monitoring and Space Debris
Publication Language: Russian
Abstract: 
We propose a methodology of the physical (bench) simulation of a long-term exposure of a space debris object coating (in particular, the Cyclone-3 last stage coating material) to rarefied plasma jet of high-energy (Ei >>100 eV) ions. It concerns material sputtering and ion-to-object momentum transfer in ESA LEOSWEEP project. The methodology is based on an accelerated life test procedure and a criterion of the equivalence of two exposure regimes: in the Earth ionosphere and in laboratory conditions.
Keywords: dynamic effect, plasma beam, simulation of exposure, space debris, sputtering
References: 
1. Arifov U. A. Interaction of Atomic Particles with a Solid Surface, 371 p. (Nauka, Moscow, 1968) [in Russian].
2. Barantsev R. G. Interaction of Rarefied Gases with Strimlined Surfaces, 344 p. (Nauka, Moscow, 1975) [in Russian].
3. Belan N. V., Kim V. P., Oransky A. I., Tikhonov V. B. Stationary Plasma Thrusters, 284 p. (Kharkov Aviation Institute, Kharkov, 1989) [in Russian].
4. Danilin B. S. Application of Low-Temperature Plasma to Film Deposition, 328 p. (Energoatomizdat, Moscow, 1989) [in Russian].
5. Erofeev A. I. On the effect of roughness on gas flow – solid surface interaction. Mekhanika Zhidkostei I Gaza, N 6, 82—89 (1967).
6. Ivanovsky G. F., Petrov V. I. Ion-Plasma Material Treatment, 284 p. (Radio i Svyaz’, Moscow, 1986) [in Russian].
7. Kaminsky M. Atomic and Ion Impact Phenomena on Metal Surfaces, 507 p. (Springer-Verlag, Berlin – Heidelberg –New York, 1965).
https://doi.org/10.1007/978-3-642-46025-8
8. Pleshivtsev N. V. Cathode Sputtering, 347 p. (Atomizdat, Moscow, 1968) [in Russian].
9. Pyaripuu A. A. Rarefied gas – solid surface interaction model, Proceedings of the 4th All-Union Conference on Rarefied Gas Dynamics and Molecular Gas Dynamics, 464—469 (Central Aerohydrodynamic Institute, Moscow, 1977) [in Russian].
10. Sputtering by Particle Bombardment II  Ed. By R. Behrisch, 394 p. (Springer-Verlag, Berlin – Heidelberg:(1983).
11. Ryzhov Yu. A. Interaction of a high-velocity rarefied stream with a solid surface, Problems of Mechanics and Heat Exchange in Space Engineering. Ed. by O.M.Belotserkovsky, 99—114 (Mashinostroenie, Moscow, 1982).
12. Shuvalov V. A. Simulation of Body–Ionosphere Interaction, 180 p. (Naukova Dumka, Kyiv, 1995).
13. Shuvalov V. A., Bandel K. A., Priimak A. I., Kochubei G. S. Magnetohydrodynamic braking of “magnetized” planets in the solar wind plasma flow. Kosm. nauka tehnol., 15 (6), 3—13 (2009) [in Russian].
14. Shuvalov V. A., Kochubei G. S., Priimak A. I., Gubin V. V., Resnichenko N. P. Simulation of the radiation electrization of spacecraft leeward surfaces in a polar orbit in the Earth’s ionosphere. Kosm. nauka tehnol., 7 (5-6), 30—43 (2001) [in Russian].
15. Shuvalov V. A., Kulagin S. N., Kochubei G. S., Tokmak N. A. Simulation of body – Earth’s ionosphere magnetohydrodynamic interaction in a rarefied plasma flow. Kosm. nauka tehnol., 17 (5), 29—39 (2011) [in Russian].
https://doi.org/10.15407/knit2011.05.029
16. Shuvalov V. A., Pis’mennyi N. I., Kochubei G. S., Nosikov S. V. Spacecraft solar battery power loss in the Earth’s olar ionosphere and magnetosphere. Kosm. nauka tehnol., 17 (3), 5—15 (2011) [in Russian].
https://doi.org/10.15407/knit2011.03.005
17. Shuvalov V. A., Priimak A. I., Gubin V. V. Radiative electrization of spacecraft construction elements: physical modeling of charge accumulation and neutralization.
Cosmic Res., 39 (1), 15—22 (2001) [in Russian].
https://doi.org/10.1023/A:1002879626515 
18. Shuvalov V. A., Tokmak N. A., Reznichenko N. P. Spacecraft polymer film degradation under long-term exposure to atomic oxygen flows and vacuum ultraviolet radiation. Kosm. nauka tehnol., 21 (5), 57—68 (2015) [in Russian].
https://doi.org/10.15407/knit2015.05.057
19. Shuvalov V. A., Tokmak N. A., Reznichenko N .P. Physical simulation of the action of atomic oxygen and vacuum ultraviolet radiation on polymer materials in the earth’s ionosphere. Instruments and Experimental Techniques59 (3), 442—450 (2016).
https://doi.org/10.7868/S0032816216020269.
https://doi.org/10.1134/S0020441216020263
20. Shuvalov V. A., Tokmak N. A., Tsokur A. G., Kochubei G. S. Dynamic interaction of a spaceraft moving under a “magnetic sail” with a rarefied plasma. Kosm. nauka tehnol., 20 (3), 14—21 (2014) [in Russian].
https://doi.org/10.15407/knit2014.03.014
21. Bombardelli C., Pela’ez J. Ion beam Shepherd for Contactless Space Debris Removal. J. Guidance and Dynamics, 34 (3), 916— 920 (2011).
https://doi.org/10.2514/1.51832 span>
22. Kitamuza S., Hayakawa Y., Kawamoto S. A Reorbiter for GEO Large Space Debris Using Ion Beam Irradiation.The 32-nd Int. Electric Propulsion Conference, 10 p.(Wiesbaden, Germany, 2011).
23. Merino M., Ahedo E., Bombardelli C., Urrutxua H., Pela`ez J.Hypersonic plasma plume expansion in space. The 32-nd Int. Electric Propulsion Conference, 14 p. (Wiesbaden, Germany, 2011).