Dynamics of the composite casing of solid-propellant rocket engine under the influence of impulse loads describing the work processes in the engine

1Chernobryvko, MV, 1Avramov, KV, 2Degtyarenko, PG, Tonkonogenko, AM, 3Mesha, YV, 4Tishkovets, OV, 4Zholos, OV
1A. N. Podgorny Institute for Mechanical Engineering Problems of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
2Yangel Yuzhnoye State Design Office, Dnipro, Ukraine
3LTD RPI HARTRON-ARKOS, Kharkiv, Ukraine
4NTU “Kharkiv Polytechnical Institute”, Kharkiv, Ukraine
Space Sci.&Technol. 2017, 23 ;(1):18-29
https://doi.org/10.15407/knit2017.01.018
Publication Language: Russian
Abstract: 
We propose the model of the dynamic behavior of solid propellant motor composite casing under the internal impact
pressure. This pressure describes the operation of the engine. The thin-walled casing consists of the cylindrical shell and two bottoms in the form of truncated hemispheres. The casing is clamped to the rocket along two edges of the bottoms. The structure model takes into account the shear, the rotary inertia and the stress-strain relations for the orthotropic material. The semi-analytical method allows analyzing the stress-strain state of the structure. In the model, the thin-walled casing dynamic is described by high dimension system of the ordinary differential equations.
Keywords: equations of thin-walled structure, internal impact pressure, solid propellant motor, stress-strain state
References: 
1. Biederman V. L. Mechanics of thin-walled structures, 485 p. (Engineering, Moscow, 1977) [in Russian].
2. Bulgarian A. V., Muhachev G. A., Shchukin V. K. Thermodynamics and Heat Transfer, 494 p. (Higher School, Moscow, 1975) [in Russian].
3. Borisov V. A. Construction of the main components and systems of rocket engines, 114 p. (Samara state. aerokosm Univ., Samara, 2011) [in Russian].
4. Grigolyuk E. I., Mamai V. I. Nonlinear deformation of thinwalled structures, 264 p. (FIZMATLIT, Moscow, 1997) [in Russian].
5. Grigorenko Y. M., Vlaicu G. G., Grigorenko Ya. Numerically analytical solution of problems of mechanics of shells on the basis of different models, 472 р. (Izdotelsky Academperiodika house, Kiev, 2006).
6. Mossakovskii V. I, Makarenko A. G., Nikitin P. I., et al. Durability missile designs, 359 p. (Ed. V. I. Mossakovskii, Higher School, Moscow, 1990) [in Russian].
7. Sanin F. P., Kuchma L. D., Jur E. A., et. al. Solid rocket motors, 320 p. (DNU, Dnepropetrovsk, 1999). [in Ukrainian].
8. Bathe K. J., Wilson E. L. Numerical Methods in Finite Element Analysis, 528 p. (Prentice-Hall., Englewood Cliffs, N. J., 1976).
9. Chen J. T., Leu S.-Y. Finite element analysis, design and experiment on solid propellant motors with a stress reliever. Finite Elements in Analysis and Design, N 29, 75—86 (1998).
https://doi.org/10.1016/S0168-874X(98)00015-8
10. Montesano J., Behdinan K., Greatrix D. R., Fawaz Z. Internal chamber modeling of a solid rocket motor:Effects of coupled structural and acoustic oscillations on combustion. J. Sound and Vibration, N 311, 20—38 (2008).
11. Poe С. С. Impact damage and residual tension strength of a thick graphite/epoxy rocket motor case. J. Spacecraft and Rockets, 29 (3), 394—404 (1992).
12. Renganathan K., Nageswara-Rao B., Jana M. K. Failure pressure estimations on a solid propellant rocket motor with a circular perforated grain. Int. J. Pressure Vessels and Piping, N 76, 955–963 (1999)
.https://doi.org/10.1016/S0308-0161(99)00070-8
13. Soedel W. Vibrations of Shells and Plates, 361 p. (Inc Marcel Dekker, New York, 2005).
14. Yildirim H. C., Ozupek S. Structural assessment of a solid propellant rocket motor: Effects of aging and damage. Aerospace Science and Technology, N 15, 635—641 (2011).
https://doi.org/10.1016/j.ast.2011.01.002