Temperature evolution of martensitic structure in Ni-Mn-Ga single crystals

1Glavatsky, IM, 1Glavatska, NI
1G.V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2009, 15 ;(2):56-68
https://doi.org/10.15407/knit2009.02.056
Publication Language: Ukrainian
Abstract: 
We studied the temperature stability and evolution of crystal and magnetic structures in Ni-Mn-Ga-X (X = Cu, Fe) single crystals of non-stoichiometric composition with the modulated 10M and not modulated tetragonal 2M lattices of the martensitic phase. The correlation between structure changes and functional properties was investigated. The following methods were implemented: X-ray diffraction, neutronography, dilatometry, low-field magnetic susceptibility and measurements of a magneto-mechanical properties using magneto-dilatometric complex of a high resolution (100 nm). It is clarified that the crystal structure of the studied martensites is stable over the whole temperature range of their existence. The deep cooling (down to 4 K) leads to a strongly anisotropic change of the lattice parameters, which causes the restructuring of the twin and domain martensitic structures due to the relaxation of retained and thermal stresses. It is this fact that leads to a sharp change in the magnetic, magnetomechanical and transport properties during cooling down to about 200 K. The antiferromagnetic (AFM) ordering of the martensitic phase in the Ni-Mn-Ga-Cu-based alloys is observed for the first time The AFM component appears below 100 K and coexists,with the ferromagnetic ordering down to 4 K.
Keywords: crystals, magneto-mechanical properties, X-ray diffraction
References: 
1. Cherepin V. T., Glavatska N. I., Glavatskiy I. N., Gavriljuk V. G. Dilatometer for measurements of linear dimension variation under effect of temperature, magnetic field and mechanical stress. Meas. Sci. Tech., 13, 174–178 (2002).
https://doi.org/10.1088/0957-0233/13/2/306
2. Chernenko V. A., Amengual A., Cesari E., et al. Thermal and Magnetic Properties of Stress-Induced Martensites in Ni-Mn-Ga Alloys. J. Phys. C, 5/2, 95–98 (1995).
https://doi.org/10.1051/jp4:1995214
3. Chernenko V. A., Cesari E., Khovailo V., et al. Inter-martensitic phase transformations in Ni-Mn-Ga studied under magnetic field. J. Magn. Magn. Mater., 290–291, 871–873 (2005).
https://doi.org/10.1016/j.jmmm.2004.11.399
4. Chernenko V. A., Pons J., Cesari E., Ishikawa K. Stress-temperature phase diagram of a ferromagnetic Ni-Mn-Ga shape memory alloy. Acta Materialia, 53, 5071–5077 (2005).
https://doi.org/10.1016/j.actamat.2005.07.018
5. Chernenko V. A., Segui C., Cesari E., et al. Sequence of martensitic transformations in Ni-Mn-Ga alloys. Phys. Rev. B, 57 (5), 2659–2662 (1998).
https://doi.org/10.1103/PhysRevB.57.2659
6. Dai L., Cullen J., Wuttig M. Intermartensitic transformation in a NiMnGa alloy. J. Appl. Phys., 95, 6957–6959 (2004).
https://doi.org/10.1063/1.1687203
7. Glavatska N., Dobrinskiy A., Glavatskiy I., et al. Effect of alloying on transformation temperatures and magneto-plasticity in Ni-Mn-Ga alloys. Func. Mater., 13 (2), 331–336 (2006).
8. Glavatskyy I., Glavatska N., Dobrinsky A., et al. Crystal structure and high-temperature magnetoplasticity in the new Ni-Mn-Ga-Cu magnetic shape memory alloys. Scr. Mater., 56 (7), 565–568 (2007).
https://doi.org/10.1016/j.scriptamat.2006.12.019
9. Glavatskyy I., Glavatska N., Soderberg O., et al. Transformation temperatures and magnetoplasticity of the Ni-Mn-Ga alloyed with Si, In, Co or Fe. Scr. Mater., 54, 1891–1895 (2006).
https://doi.org/10.1016/j.scriptamat.2006.02.010
10. Glavatskyy I., Glavatska N., Soderberg O., Rudenko O. Time-dependent effects caused by the magnetic field in the Ni-Mn-Ga magnetic shape memory martensites. In: Novel Structural and Functional Materials and Methods for their characterization: Abstracts, 72–94 (FOP Kuprijanova, Kyiv, 2007).
https://doi.org/10.1002/chin.200738224
11. Jun J.-H., Choi C.-S. Variation of stacking fault energy with austenite grain size and its effect on the MS temperature of γ→ε martensitic transformation in Fe-Mn alloy. Mater. Sci. Engng. A, 257, 353–356 (1998).
https://doi.org/10.1016/S0921-5093(98)00994-0
12. Khovailo V. V., Oikawa K, Wedel C, et al. Influence of intermartensitic transitions on transport properties of Ni216Mn084Ga alloy. J. Phys.: Condens. Matter., 16, 1951–1954 (2004).
https://doi.org/10.1088/0953-8984/16/12/005
13. Kokorin V. V., Konoplyuk S. M., Perekos A. E., Semenova Yu. S. Martensitic transformation temperature hysteresis narrowing and magnetocaloric effect in ferromagnetic shape memory alloys Ni-Mn-Ga. J. Magn. Magn. Mater., 321 (7), 782–785 (2009).
https://doi.org/10.1016/j.jmmm.2008.11.077
14. Kokorin V. V., Martynov V. V., Chernenko V. A. Stress — induced martensitic transformations in Ni2MnGa. Scr. Metall. Mater., 26, 175–177 (1992).
https://doi.org/10.1016/0956-716X(92)90168-E
15. Kokorin V. V., Perekos A. O., Tshcherba A. A., et al. Intermartensitic phase transitions in Ni-Mn-Ga alloy magnetic field effect. J. Magn. Magn. Mater., 302, 34–39 (2006).
https://doi.org/10.1016/j.jmmm.2005.08.010
16. Lahiri A. K, Banerjee T. Stacking fault densities of copper-manganese alloys. Brit. J. Appl. Phys., 16, 1217 (1965).
https://doi.org/10.1088/0508-3443/16/8/125
17. Mecklenburg A., Fiechter S., Nabein H.-P., Schneider R. P. Verfahren und Anordnung zur Kristallzchtung aus metallischen Schmelzen oder Schmelzlosungen: Pat. N DE102004018664A1 (2005).
18. Mogylnyy G., Glavatsky I., Glavatska N., et al. Crystal structure and twinning in martensite of Ni 1.96 Mn 1.18 Ga 0.86 magnetic shape memory alloy. Scripta Mater., 48, 1427–1432 (2003).
https://doi.org/10.1016/S1359-6462(03)00108-8
19. Pons J., Chernenko V.A., Santamarta R, Cesari E. Crystal structure of martensitic phases in Ni-Mn-Ga shape memory alloys. Acta Mater., 48, 3027– 3038 (2000).
https://doi.org/10.1016/S1359-6454(00)00130-0
20. Rolfs K., Mecklenburg A., Guldbakke J.-M., et al. Crystal quality boosts responsiveness of magnetic shape memory single crystals. J. Magn. Magn. Mater., 321 (8), 1063–1067 (2009).
https://doi.org/10.1016/j.jmmm.2008.10.023
21. Segui C, Chernenko V. A., Pons J., Cesari E. Low-temperature-induced intermartensitic phase transformations in Ni-Mn-Ga single crystal. J. Magn. Magn. Mater., 290–291, 811–815 (2005).
https://doi.org/10.1016/j.jmmm.2004.11.568
22. Segui C, Chernenko V. A., Pons J., et al. Low temperature-induced intermartensitic phase transformations in Ni-Mn-Ga single crystal. Acta Materialia, 53, 111–120 (2005).
https://doi.org/10.1016/j.actamat.2004.09.008
23. Söderberg O., Aaltio I., GeY., et al. Ni-Mn-Ga multifunctional compounds. Mat. Sci. Eng. A, 481– 482, 80–85 (2008).
24. Söderberg O., Sozinov A., Lanska N., et al. Effect of inter-martensitic reaction on the co-occurrence of the magnetic and structural transition in Ni-Mn-Ga alloys. Mater. Sci. Engng. A, 438–440, 957– 960 (2006).
https://doi.org/10.1016/j.msea.2006.02.052
25. Soolshenko V., Lanska N., Ullakko K. Structure and twinning stress of martensites in non-stoichiometric Ni 2MnGa single crystal. J. Phys. IV France, 112, 947 (2003).
https://doi.org/10.1051/jp4:20031037
26. Sozinov A., Likhachev A. A., Lanska N., Ullakko K. Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase. Appl. Phys. Lett., 80 (10), 1746–1748 (2002).
27. Srivastava V. K., Chatterjee R., Nigam A. K., O'Handley R. C. Electric and magnetic signatures of martensitic and inter-martensitic transformations in Ni-Mn-Ga crystal. Solid State Communs., 136, 297–299 (2005).
28. Straka L., Heczko O., Lanska N. Magnetic properties of various martensitic phases in Ni-Mn-Ga alloy. IEEE Trans. Magn., 38, 2835 (2002).