The generation of inherent ULF modes in the Earth's magnetosphere by solar wind

1Agapitov, AV, 2Cheremnykh, OK
1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
2Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2008, 14 ;(4):72-81
https://doi.org/10.15407/knit2008.04.072
Publication Language: Russian
Abstract: 
A study of Pc-5 magnetic pulsations using some data from the ACE, Wind, Polar Cluster, Geotail and Goes-10 spacecrafts and ground-based magnetic field measurements from the Intermagnet archive was carried out. Solar wind in the Earth's orbit is a quasi-stationary formation with tangential discontinuous, fast and slow shock waves. We accentuate our study on geomagnetic pulsations associated with sudden storm commencements (SSC) and sudden impulses (SI). The disturbances of magnetopause surface produce the fast MHD wave front which penetrates into the magnetosphere. Pulsations associated with fast waves were detected on spacecrafts and on the Earth's surface with the same frequency. Pulsations excitation can be considered as one of energy transport mechanisms from solar wind to the ionosphere. Frequencies of detected pulsations depend on geomagnetic latitude and approximately correspond to the toroidal alfvenic mode. Pulsations with different frequencies were observed simultaneously on different magnetic latitudes. The existence of spectral maxima after wideband fast MHD waves propagation testify the magnetosphere property to select particular spectral peaks and to produce Pc3-5 pulsations with expressed periodicities. The Earth's magnetosphere is assumed to be the resonance system for hydromagnetic waves excited due to the shocks outside the magnetosphere.
Keywords: magnetic field, magnetic pulsations, solar wind
References: 
1. Agapitov A. V. Ps6 propagation in the Earth magnetosphere tail after magnetic substorms. Kosm. nauka tehnol., 10 (5-6), 117—121 (2004) [in Russian].
2. Agapitov A. V., Parnowski A. S., Cheremnykh O. K. Spectrum of transversally small-scale perturbations in the inner Earth's magnetosphere. Kinematika i Fizika Nebesnykh Tel, 22 (6), 387—401 (2006) [in Russian].
3. Dobeshi I. Ten lectures on wavelets, 464 p. (Izhevsk, 2001) [in Russian].
4. Kleimenova N. G. Geomagnetic pulsations. In: Space Model, Vol. 1, 872 p. (Vol. 1-2; Vol. 1) (Knizhny Dom Universitet, Moscow, 2007) [in Russian].
5. Nishida A. Geomagnetic Diagnosis of the Magnetosphere, 299 p. (Mir, Moscow, 1980) [in Russian].
6. Pudovkin M. I., Raspopov O. M., Kleimenova N. G. Perturbations of the Earth’s Electromagnetic Field. Part 2. Short-Period Oscillations of Geomagnetic Field, 271 p. (Leningrad State Univ., Leningrad, 1976) [in Russian].
7. Agapitov A. V., Cheremnykh O. K., Parnowski A. S. Ballooning perturbations in the inner magnetosphere of the Earth: spectrum, stability and eigenmode analysis. Adv. Space Sci., 41 (10), 1682—1687 (2008).
https://doi.org/10.1016/j.asr.2006.12.040
8. Andreeova K., Prech L. Propagation of interplanetary shocks into the Earth's magnetosphere. Adv. Space Res., 40 (12), 1871 — 1880 (2007).
https://doi.org/10.1016/j.asr.2007.04.079
9. Balogh A., Carr C.M., Acuca M-H., et al. The Cluster magnetic field investigation: Overview of in-flight performance and initial results. Ann. geophys., 19, 1207—1217 (2001).
https://doi.org/10.5194/angeo-19-1207-2001
10. Chen L., Hasegawa A. A theory of long-period magnetic pulsations: 1. Stady state exitation of field line resonanct. J. Geophys. Res., 79, 1024—1032 (1974).
https://doi.org/10.1029/JA079i007p01024
11. Cheng C. Z., et al. Magnetohydrodynamic Theory of Field Line Resonances in the Magnetosphere. J. Geophys. Res., 98 (A7), 11339—11347 (1993).
https://doi.org/10.1029/93JA00505
12. Denton R. E., Gallagher D. L. Determing the mass density along magnetic field lines from toroidal eigenfrequencies. J. Geophys. Res., 105, 27717—27725 (2000).
https://doi.org/10.1029/1999JA000397
13. Denton R. E., Lessard M. R., Anderson R., et al. Determing the mass density along magnetic field lines from toroidal eigenfrequencies: Polynomial expansion applied to CRESS data. J. Geophys. Res., 106, 29915—29924 (2001).
https://doi.org/10.1029/2001JA000204
14. Kepko, L., Spence H. E. Observations of discrete, global magnetospheric oscillations directly driven by solar wind density variations. J. Geophys. Res., 108 (A6), 1257—1271 (2003).
https://doi.org/10.1029/2002JA009676
15. Kivelson M. G. ULF waves from ionosphere to the outer planets. In: AGU Monograph. N 169, Eds K. Takahashi, P.-J. Chi., No. 6264, 11—30 (IGPP Publ., 2006).
https://doi.org/10.1029/169GM04
16. Korotova G. I., Sibeck D. G., Singer H. J., Rosenberg T. J. Multipoint observations of transient event motion through the ionosphere and magnetosphere. In: NATO Science Series Book: Multiscale processes in the Earth’s magnetosphere: from Interball to Cluster, Ed. by J.-A. Sauvaud, Z. Nemecek, 205—216 (Kluwer, Dordrecht; Boston; London, 2004).
17. Leonovich A. S. Mazur V. A. A theory of transverse small-scale standing Alfven waves in an axially symmetric magnetosphere. Planet. Space Sci., 41 (9), 697—717 (1993).
https://doi.org/10.1016/0032-0633(93)90055-7
18. Hudson M. K., Denton R. E., Lessard M. R., et al. A study of Pc-5 ULF oscillations. Ann. geophys., 22, 289—302 (2004).
https://doi.org/10.5194/angeo-22-289-2004
19. Petrinec S. M., Yumoto K., Lbhr H., et al. The CME event of February 21, 1994: Response of the magnetic field at the Earth's surface. J. Geomagn. and Geoelec., 48, 1341 — 1379 (1996).
https://doi.org/10.5636/jgg.48.1341
20. Pilipenko V. A. ULF waves on the ground and in space. J. Atmos. Terr. Phys., 52 (12), 1193—1209 (1990).
https://doi.org/10.1016/0021-9169(90)90087-4
21. Saito T., Matsushita S. Geomagnetic pulsations associated with sudden commencements and sudden impulses. Planet. Space Sci., 15, 573—587 (1967).
https://doi.org/10.1016/0032-0633(67)90163-8
22. Sibeck D. G. Pressure pulses and cavity mode resonances in multiscale processes in the Earth's magnetosphere: from Interball to CLUSTER. NATO Sci. Ser., 95—110 (2003).
23. Southwood D. J., Kivelson M. G. The Magnetohydrodynamic response of the magnetospheric cavity to changes in solar wind pressure. J. Geophys. Res., 95 (A3), 2301—2309 (1990).
https://doi.org/10.1029/JA095iA03p02301
24. Sonnerup B. U. O., Scheible M. Minimum and maximum variance analysis, in analysis methods for multi-spacecraft data, Eds G. Paschmann, P. W. Daly, 1850 p. (ESA Publ. Div., Noordwijk, Netherlands, 1998).
25. Takahashi K. ULF waves: 1997 IAGA division 3 reporter review. Ann. geophys., 16, 787—803 (1998).
https://doi.org/10.1007/s00585-998-0787-1
26. Villante U., Francia P., Lepidi S. Pc5 geomagnetic field fluctuations at discrete frequencies at a low latitude station. Ann. geophys., 19, 321—325 (2001).
https://doi.org/10.5194/angeo-19-321-2001
27. Zhu X., Kivelson M. Compressional ULF Waves in the Outer Magnetocthere. 1. Statistical Study. J. Geophys. Res., 99 (A1), 19451 — 19467 (1994).
https://doi.org/10.1029/93JA02106

28. Zhu X., Kivelson M. Compressional ULF Waves. 2. Case Study. J. Geophys. Res., 99 (Al), 241 — 252 (1994).