Antarctic tropopause in winter and spring

1Evtushevsky, OM, 1Grytsai, AV, 2Milinevsky, GP
1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
2Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Kosm. nauka tehnol. 2008, 14 ;(4):58-71
https://doi.org/10.15407/knit2008.04.058
Publication Language: Ukrainian
Abstract: 
The distribution of total ozone, troposphere and stratosphere temperature as well as of tropopause height over Antarctic region is analyzed. Dominant influence of lower stratosphere cooling on the tropopause height increase is revealed. The cooling is caused by the temperature decrease within the stratospheric polar vortex in the winter months and by the ozone losses and ozone hole formation in the spring months. In the Weddell Sea region an anomalous tropopause elevation to 13‒14 km (as compared with typical values of 9‒10 km) is accompanied by widening the transition layer between the troposphere and stratosphere. Troposphere influence is seen only in the tropopause lowering by 2 km over the continental plateau in the East Antarctica. The seasonal formation and regional location of the anomaly cause the changes in the troposphere vertical extension over Antarctic region, in the processes of the troposphere-stratosphere exchange and in the planetary wave propagation involved in the climate change in the region.
Keywords: Antarctic region, ozone, temperature
References: 
1. Agapitov O. V., Gritsai A. V., Evtushevs’ky O. M., Milinevs’ky G. P. The zonal asymmetry of the total content of ozone in the Antarctic in spring. Reports of the National Academy of Sciences of Ukraine, No. 6, 60—67 (2006) [in Ukrainian].
2. Allen D. R., Bevilacqua R. M., Nedoluha G. E., et al. Unusual stratospheric transport and mixing during the 2002 Antarctic winter. Geophys. Res. Lett., 30 (12) 1599 (2003) 
https://doi.org/10.1029/2003GL017117
3. Fergusson A. Ozone depletion and climate change: understanding the linkages, 39 p. (Environment Canada. Meteorological Service of Canada, 2001).
4. Francis G. N., Salby M. L. Radiative influence of Antarctica on the polar-night vortex. J. Atm. Sci., 58 (10), 1300—1309 (2001).
https://doi.org/10.1175/1520-0469(2001)058<1300:RIOAOT>2.0.CO;2
5. Grytsai A. V.,Evtushevsky O. M., Agapitov O. V., et al. Structure and long-term change in the zonal asymmetry in Antarctic total ozone during spring. Ann. Geophys., 25 (2), 361—374 (2007).
6. Grytsai A. V., Evtushevsky O. M., Milinevsky G. P. Anomalous quasi-stationary planetary waves over the Antarctic region in 1988 and 2002. Ann. Geophys., 26 (5), 1101 — 1108 (2008).
7. Hartley D. E., Villarin J. T., Black R. X., Davis C. A. A new perspective on the dynamical link between the stratosphere and troposphere. Nature, 391 (29 January), 471—474 (1998).
8. Hoinka K. P. Statistics of the global tropopause pressure. Mon. Wea. Rev., 128 (12), 3309—3325 (1998).
https://doi.org/10.1175/1520-0493(1998)126<3303:SOTGTP>2.0.CO;2
9. Hoinka K. P., Claude H., Kohler U. On the correlation between tropopause pressure and ozone above Central Europe. Geophys. Res. Lett., 23 (14), 1753—1756 (1996).
10. Holton J. R., Haynes P. H., Mclntyre M. E., et al. Stratosphere-troposphere exchange. Rev. Geophys., 33 (4), 403—440 (1995).
11. Hood L. L., Zaff D. A. Lower stratospheric stationary waves and the longitude dependence of ozone trends in winter. J. Geophys. Res., 100, 25 791—25 800 (1995).
12. James P. M., Peters D., Waugh D. W. Very low ozone episodes due to polar vortex displacement. Tellus, 52B, 1123—1137 (2000).
13. Petzoldt K. The role of dynamics in total ozone deviations from their long-term mean over the Northern Hemisphere. Ann. Geophys., 17 (2), 231—241 (1999).
14. Randel W. J., Wu F. Cooling of the Arctic and Antarctic polar stratospheres due to ozone depletion. J. Climate, 12 (5) 1467—1479 (1999).
15. Roscoe H. K. Possible descent across the «tropopause» in Antarctic winter. Adv. Space Res., 33 (1), 1048—1052 (2004).
https://doi.org/10.1016/S0273-1177(03)00587-8
16. Son S.-W., Lee S., Feldstein S. B. Intraseasonal variability of the zonal-mean extratropical tropopause height. J. Atm. Sci., 64 (2), 608—620 (2007).
https://doi.org/10.1175/JAS3855.1
17. Song Y., Robinson W. A. Dynamical mechanisms for stratospheric influences on the troposphere. J. Atm. Sci., 61 (14), 1711 — 1725 (2004).
https://doi.org/10.1175/1520-0469(2004)061<1711:DMFSIO>2.0.CO;2
18. Stohl A., Wernli H., James P., et al. A new perspective of stratosphere-troposphere exchange. Bull. Am. Met. Soc., 84 (11), 1565—1573 (2003).
19. Thompson D. W. J., Baldwin M. P., Solomon S. Stratosphere-troposphere coupling in the Southern Hemisphere. J. Atm. Sci., 62 (3), 708—715 (2005).
20. Turner J., Lachlan-Cope T. A., Colwell S., et al. Significant warming of the Antarctic winter troposphere. Science, 311 (5769), 1914—1917 (2006).
21. Varotsos C, Cartalis C, Vlamakis A., et al. The long-term coupling between column ozone and tropopause properties. J. Climate, 17 (19), 3843—3854 (2004).
22. Vigliarolo P. K., Vera C. S., Diaz S. B. Synoptic-scale variability and its relationship with total ozone and Antarctic vortex displacements. Mon. Weath. Rev., 133 (8), 2374—2386 (2005).
23. Wirth V. Quasi-stationary planetary waves in total ozone and their correlation with lower stratospheric temperature. J. Geophys. Res., 98 (D5), 8873—8882 (1993).
24. Scientific assessment of ozone depletion: 2002, Report N 47 (World Meteorological Organization, Geneva, 2003).
25. Scientific assessment of ozone depletion: 2006, Report N 50 (World Meteorological Organization, Geneva, 2007).
26. Yang X-Y., Huang R. X., Wang D. X. Decadal changes of wind stress over the Southern Ocean associated with Antarctic ozone depletion. J. Climate, 20 (14), 3395—3410 (2007).
27. Zangl G., Hoinka K. P. The tropopause in the polar regions. J. Climate, 14 (14), 3117—3139 (2001).
https://doi.org/10.1175/1520-0442(2001)014<3117:TTITPR>2.0.CO;2