Effects of magnetohydrodynamic control in heat exchange and decelaration of magnetized bodies in the earth's atmosphere and magnetosphere

1Shuvalov, VA, 2Priymak, AI, 2Bandel, KA, 2Kochubey, GS, 1Tokmak, NA
1Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipro, Ukraine
2Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipropetrovsk, Ukraine
Kosm. nauka tehnol. 2008, 14 ;(4):27-38
https://doi.org/10.15407/knit2008.04.027
Section: Spacecraft Dynamics and Control
Publication Language: Russian
Abstract: 
It is shown that the rotation of the proper magnetic field in the plasma is an efficient means for controlling convective heat exchange and aerodynamic efficiency of a dielectric body at axial flow over.
Keywords: convective heat exchange, magnetic field, plasma
References: 
1. Alfvén H., Fälthammar C.-G. Cosmical Electrodynamics: Fundamental Principles, 260  p. (Mir, Moscow, 1967) [in Russian].
2. Arzhanikov N. S., Sadekova G. S. Aerodynamics of high speed, 560 p. (Vysshaja shkola, Moscow, 1965) [in Russian].
3. Baranov V. B., Krasnobaev K. V. Hydrodynamic Theory of Cosmic Plasma, 431 p. (Nauka, Moscow, 1977) [in Russian].
4. Braginsky S. I. Transport phenomena in a plasma. In: Reviews of Plasma Physics, Ed.by M. A. Leontovich, Vol. 1, 183—272 (Gosatomizdat, Moscow, 1963) [in Russian].
5. Golovachev Yu. P., Kurbatov G. A., Chernyshev A. S., Schmidt A. A. Analysis of factors influencing supersonic flow about a conical body under magnetohydrodynamic interaction conditions. Pis'ma v ZhTF, 32 (14), 52—57 (2006) [in Russian].
6. Gurevich A. V., Moskalenko A. M. On the braking of bodies moving in a rarefied plasma. In: Issledovanija kosmicheskogo prostranstva, 241—254 (Nauka, Moscow, 1965) [in Russian].
7. Kovalenko V. A. Solar wind, 272 p. (Nauka, Moscow, 1983) [in Russian].
8. Koshmarov Yu. A., Ryzhov Yu. A. Applied Dynamics of Rarified Gas, 184 p. (Mashinostroenie, Moscow, 1977) [in Russian].
9. Krasnov N. F. Aerodynamics, 632 p. (Vyssh. shk., Moscow, 1971) [in Russian].
10. Krasnov N. F. Aerodynamics of Bodies of Revolution, 436 p. (Mashinostroenie, Moscow, 1964) [in Russian].
11. Kulikovskiy A. G., Lyubimov G. A. Magnetohydrodynamics, 246 p. (Fizmatgiz, Moscow, 1962) [in Russian].
12. Loh W. H. T. Dynamics and thermodynamics of planetary entry, 276 p. (Mir, Moscow, 1966) [in Russian].
13. Lyubimov A. N., Rusanov V. V. Gas flows around blunt bodies, Pt. II, 380 p. (Nauka, Moscow, 1970) [in Russian].
14. Martin J. Entry into atmosphere. Introduction to theory and practice, 320 p. (Mir, Moscow, 1969) [in Russian].
15. Maslennikov M. V., Sigov V. S., Churkina G. P. Numerical Experiments on Flow of Rarefied Plasma around Bodies of Various Shapes. Kosmicheskie issledovanija, 6 (2), 220—227 (1968) [in Russian].
16. Vernov S. N. (Ed.) Cosmos Model-82, vol. 1, 600 p. (Mosk. Gos. Univ., Moscow, 1983) [in Russian].
17. Nechtel E., Pitts U. Experimental studies of resistance to movement of satellites due to electrical forces. Raketnaja tehnika i kosmonavtika, 2 (6), 222—225 (1964) [in Russian].
18. Nishida A. Geomagnetic Diagnosis of the  Magnetosphere, 299 p. (Mir, Moscow, 1980) [in Russian].
19. Porter R. U. Numerical solution of the problem of viscous flow around a blunt body with a hypersonic MHD sflow. Raketnaja tehnika i kosmonavtika, 11 (3), 154—155 (1973) [in Russian].
20. Sakharov V. A., Mende N. P., Bobashev S. V., et al. Thermal measurements at the body surface in a supersonic nitrogen flow. Pis'ma v ZhTF, 32 (14), 46—51 (2006) [in Russian].
21. Fay J. A., Kemp N. H. Theory of Stagnation Point Heat Transfer in a  Partially Ionized Diatomic Gas. Mehanika, No. 1, 47—70 (1963) [in Russian].
22. Hadzhimihalis K., Brandin K. Effect of wall temperature on the resistance of a sphere in a hypersonic rarefied gas flow. In: Dinamika razrezhennyh gazov, Ed. by V. P. Shidlovsky, 274—282 (Mir, Moscow, 1976) [in Russian].
23. Shuvalov V. A. Effect of self-magnetic field on the structure of the perturbed region near an object in a low-density plasma stream. Zhurnal Tekhnicheskoi Fiziki, 54 (6), 1107—1114 (1984) [in Russian].
24. Shuvalov V. A. Modeling the interaction of bodies with the ionosphere, 180 p. (Nauk. dumka, Kiev, 1995) [in Russian].
25. Shuvalov V. A. The structure of plasma formations near the surface of a cylinder in a flow of a partially ionized gas. PMTF - Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, 3—11 (1984) [in Russian].
26. Shuvalov V. A., Kochubey G. S., Bandel K. A., Priymak A. I. Fast-electron charge  transfer at downwind surfaces of spacecrafts in the Earth's polar ionosphere. Kosm. nauka tehnol., 13 (6), 5—17 (2007) [in Russian].
https://doi.org/10.15407/knit2007.06.005
27. Shuvalov V. A., Pismenny N. I., Priimak A. I., Kochubei G. S. Probe diagnostics of rarefied flows partially dissociated plasma. Pribory i tehnika jeksperimenta, No. 3, 92—100 (2007) [in Russian].
28. Shuvalov V. A., Tihiy V. G., Priymak A. I., et al. Degradation of polymeric materials for covering spacecraft solar arrays under exposure to atomic oxygen flows. Kosm. nauka tehnol., 11 (5-6), 78—86 (2005) [in Russian].
29. Chen S. Y. Magnetic hypersonic flow near the stagnation point at low Reynolds number. J. Spacecraft and Rockets, 6 (8), 872—877 (1969).
30. Ericson W. B., Maciulaitis A. Investigation of magneto-hydrodynamic flight control. J. Spacecraft and Rockets, 1 (3), 283—289 (1964).
31. Fujino T., Funaki J., Sugita H., Mizuno M., Iskikava M. Numerical analyses of flow control around body «OREX» by magnetic fields. AJAA Pap., 2003-3760, 10 p. (June 2003).
32. Fujino T., Sugita H., Funaki J., Iskikava M. Influence of electrical conductivity of wall on magnetohydrodynamic control of aerodynamic heating. J. Spacecraft and Rockets, 43 (1), 63—70 (2006).
33. Maslach G. J., Willis R. D., Tang S, Ko D. Recent experimental and theoretical extensions of nearly molecular flow. In: Rarefied Gas Dynamics, Vol. 1, 433—443 (Acad. Press, New York, 1965).
34. Nowak R., Kranc S., Porter R. W., et. al. Magnetogas-dynamic re-entry phenomena. J. Spacecraft and Rockets, 4 (11), 1538—1542 (1967).
35. Porter R. W., Cambell A. P. Hall effect in flight magnetogasdynamics. AJAA J., 5 (12), 2208— 2213 (1967).
36. Shang J. S., Kimmel R., Hayes J., Menart J. Hypersonic experimental facility for magnetoaerodynamic interactions. J. Spacecraft and Rockets, 42 (5), 780— 789 (2005).
37. Yoo C. Y., Porter R. W. Numerical analysis of the viscous hypersonic MHD blunt-body problem. AJAA J., 11 (3), 383—384 (1973).