The generation of kinetic alfven waves in the loop's plasma in active region

1Kryshtal, AN, 2Gerasimenko, SV
1Main Astronomical Observatory of the NAS of Ukraine, Kyiv, Ukraine
2Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2004, 10 ;(4):081-091
https://doi.org/10.15407/knit2004.04.081
Publication Language: Russian
Abstract: 
In the framework of Heyvaerts–Priest–Rust model of flare process, the conditions of rise and development of the low-frequency plasma wave instabilities in the surface layer of a post-flare loop in a solar active region are investigated. The instability can rise at the definite height in a loop as a result of the collective action of several reasons, namely, the existence of large-scale magnetic field В in the loop as well as taking into account the limit value of the ion gyroradius, the influence of a weak ("subdreicer") electric field E, which is parallel to the magnetic field of the loop, and the drift plasma motions due to the existence of the spatial inhomogeneities of plasma density and temperature. The dispersion relation for quasi-perpendicular perturbations (with respect to Bo || Ео) is reduced to the polynomial of the 4-th order in reference to the reduced frequency. One of its roots, which corresponds to the kinetic Alfven wave, becomes unstable with respect to the small perturbations, and this instability has clearly expressed threshold.
References: 
1. Aleksandrov A. F., Bogdankevich L. S., and Rukhadze A. A. Principles of Plasma Electrodynamics, 424 p. (Vysshaya Shkola, Moscow, 1989) [in Russian].
2. Bronshtein I. N., Semendyayev K. A. Handbook of Mathematics, 720 p. (Nauka, Moscow, 1981) [in Russian].
3. Gopasyuk S. I. Structure and dynamics of the magnetic field in active regions on the Sun. In: Itogi nauki i tehniki, VINITI, Astronomy, 34, 6—77 (1987) [in Russian].
4. Jackson J. D. Classical Electrodynamics, 702 p. (Mir, Moscow, 1965) [in Russian].
5. Zaitsev V.V., Stepanov A.V., Tsap Yu.T. On the problems of physics of solar and stellar flares. Kinematika i Fizika Nebesnykh Tel, 10 (6), 3—31 (1994) [in Russian].
6. Kadomtsev B. B., and Pogutse O. P. Turbulence in Toroidal Systems. In: Voprosy teorii plazmy, Is. 5, 209 (Moscow, 1967) [in Russian].
7. Kopylova Yu. G., Stepanov A. V., Tsap Yu. T. Radial Oscillations of Coronal Loops and Microwave Radiation from Solar Flares. Pis'ma v Astron. zhurn., 28 (11), 870—879 (2002) [in Russian].
8. Krall N. A., Trivelpiece A. W. Principles of plasma physics, 526 p. (Mir, Moscow, 1975) [in Russian].
9. Kryshtal' A. N., Gerasimenko S. V. Dispersion of the waves in magnitoactive plasma with sub-Dreicer electric field and strong density inhomogeneity in arch structures. Kinematika i Fizika Nebesnykh Tel, 18 (3), 258—272 (2002) [in Russian].
10. Kryshtal’ A. N., Gerasimenko S. V. Generation of Low-Frequency Waves in the Plasma of Postflare Loops in the Presence of Strong Temperature Inhomogeneity. Izv. Krym. Astrofiz. Observ., 99, 119—131 (2003) [in Russian].
11. Mihajlovskij A. B. The vibrations of an inhomogeneous plasma. In: Voprosy teorii plazmy. Is.3, 141—202 (Gosatomizdat, Moscow, 1963) [in Russian].
12. Mihajlovskij A. B. The theory of plasma instabilities. Instability of an inhomogeneous plasma. Vol. 2. Instability of an inhomogeneous plasma, 360 p. (Atomizdat, Moscow, 1975) (Vols. 1-2; Vol. 2) [in Russian].
13. Mishina A. P., Proskuryakov I. V. Higher algebra, 300 p. (Gos. izd-vo fiz.-mat. lit., Moscow, 1962) [in Russian].
14. Podgorny A. I., Podgorny I. M. Numerical Simulation of a Solar Flare Produced by the Emergence of New Magnetic Flux. Astron. zhurn., 78 (1), 71—77 (2001) [in Russian].
15. Priest E. R. Solar Magnetohydrodynamics, 589 p. (Mir, Moscow, 1985) [in Russian].
16. Somov B. V. Solar flares. In: Itogi nauki i tehniki, VINITI, Astronomy, 34, 78—135 (1987) [in Russian].
17. Somov B. V., Titov V. S., Vernetta A. I. Magnetic reconnection in solar flares. In: Itogi nauki i tehniki, VINITI, Astronomy, 34, 136—237 (1987) [in Russian].
18. Chen F. F. Introduction to Plasma Physics, 398 p. (Mir, Moscow, 1987) [in Russian].
19. Tsap Yu. T. Generalized force of pressure, flute instability, and magnetohydrostatic equilibrium of coronal magnetic loops. Kinematika i Fizika Nebesnykh Tel, 13 (2), 3—11 (1997) [in Russian].
20. Yurovskii Yu. F. On mechanisms for modulating the radio emission of solar flares. Astron. zhurn., 74 (6), 347—360 (1997) [in Russian].
21. De Jager C. Structure and dynamics of the solar atmosphere, 380 p. (Izd-vo inostr. lit., Moscow, 1962) [in Russian].
22. Aschwanden M. I. Theory of radiopulsations in coronal loops. Solar Phys., 111, 113—136 (1987).
23. Aschwanden M. I. An evaluation of coronal heating models for active regions based on Yohkoh, SOHO and TRACE observations. Astrophys. J., 560, 1035—1043 (2001 ).
24. Duijveman A., Hoyng P., Ionson I. A. Fast Plasma Heating by Anomalous and Inertial Resestivity Effects in the Solar Atmosphere. Astrophys. J., 245 (1), 721—735 (1981).
25. Foukal P. Structure and pressure balance of magnetic loops in active regions. Solar Phys., 43 (2), 327—336 (1975).
26. Foukal P., Hinata S. Electric fields in the solar atmosphere: a rewiew. Solar Phys., 132 (2), 307—334 (1991).
27. Hasegava A. Kinetic properrties of Alfven waves. Proc. Indian Acad. Sci., 86A (2), 151 — 174 (1977).
28. Heyvaerts J., Priest E. R., Rust D. M. Models of solar flares. Astrophys. J., 216 (1), 213—221 (1977).
29. Hinata S. Large-scale electric fields in post-flare loops. Solar Phys., 109 (2), 321—333 (1987).
30. Ionson J. Resonant absorption of alfvenic surface waves and the heating of solar coronal loops. Astrophys. J., 236 (2), 650—673 (1978).
31. Kryshtal A. N., Kucherenko V. P. A possible excitation mechanism for a longitudinal wave instability in a plasma by a quasi-static electric field. J. Plasma Phys., 53, pt. 2 169—184 (1995).
32. Kryshtal A. N. Low-frequency wave instabilities in a plasma with a quasi-static electric field and weak spatial inhomogeneity. J. Plasma Phys., 68, pt. 2, 137—148 (2002).
33. Kundu M. R., Nindos A., Grechnev V. V., White S. M. A multiwavelength study of three solar flares. Astrophys. J., 557 (2), 880—891 (2001).
34. Machado M. E., Avrett E. H., Vernazza J. E., Noyes R. W. Semiempirical models of chromospheric flare regions. Astrophys. J., 242 (1), 336—351 (1980).
35. Miller J. A., Cargill P. J., Emslie A. G., et al. Critical issues for understanding particle acceleration in impulsive solar flares. J. Geophys. Res., 102 (A7), 14631 — 14659 (1997).
36. Sakai J. I., Furusawa K. Nonuniform Heating of Coronal Loop Footpoints and Formation of Loop Threads Associated with Up- and Downflows in the Solar Chromosphere. Astrophys. J., 564 (2), 1048—1053 (2002).
37. Schrijver C. I., Aschwanden M. I., Title A. M. Transverse oscillations in coronal loops observed with TRACE. Solar Phys., 206 (1), 69—98 (2002).
38. Sirenko O., Voitenko Yu., Goossens M., Yukhimuk A. Nonlinear Coupling of O- and X-mode Radio Emission and Alfven Waves in the Solar Corona. In: Waves in Dusty, Solar and Space Plasmas, Ed.by Verheest, Goossens, Hellberg and Bharuthram; AIP Conf. Proc., 537, 287—294 (2000).
39. Solanki S. K. Small-scale solar magnetic fields: an overview. Space Sci. Rev., 63, 1 — 188 (1993).
40. Somov B. V. Fundamentals of Cosmic Electrodynamics, 364 p. (Kluwer, Dordrecht, 1994).
41. Van der Waerden B. L. Modern Algebra, 268 p. (Springer, Berlin, 1930).
42. Yukhimuk A., Fedun V., Sirenko O., Voitenko Yu. Excitation of Fast and Slow Magnetosonic Waves by Kinetic Alfven Waves. In: Waves in Dusty, Solar and Space Plasmas, Ed.by Verheest, Goossens, Hellberg and Bharuthram; AIP Conf. Proc., 537, 311—316 (2000).