The role of the GSM-components of the geliospheric magnetic field in the formation of auroral power flux

1Reshetnyk, VN
1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Kosm. nauka tehnol. 2004, 10 ;(4):066-073
https://doi.org/10.15407/knit2004.04.066
Publication Language: Ukrainian
Abstract: 
We analysed variations of the polar flux in northern and southern ovals in connection with changes of the direction of the geliospheric magnetic field near the Earth from 1978 to 2001. The increase of the auroral activity at southern orientation of the interplanetary magnetic field (Вz < 0) is confirmed. An asymmetric distribution of average values of the Вz -component in the ХУ-plane of the GSM-system is revealed. We found that the average activity of polar lights for both hemispheres is higher when Вx >0 under the northern orientation of the interplanetary magnetic field. For different hemispheres, the increase of the auroral activity is observed under different signs of the Вy -component of the interplanetary magnetic field. The seasonal variations of the auroral activity is revealed, namely, auroral power flux is maximum during equinoxes. The dependence of the auroral activity on azimuthal component of the interplanetary magnetic field decreases in winter and increases in summer.
References: 
1. Vorobev V. G., Zverev V. L. The effect of components of the interplanetary magnetic field on the location of the auroral oval in the day sector. Poliarnye Siianiia i Svechenie Nochnogo Neba, No. 28, 21—24 (1981) [in Russian].
2. Leontev S. V. Effect of the Y component of the interplanetary magnetic field on the position of the polar cusps. Geomagnetizm i Aeronomiia,   15 (3), 569—571 (1975) [in Russian].
3. Reshetnyk V. M., Dzubenko M. I., Ivchenko V. M. Morphology of geliospheric magnetic field and polar flux. Kinematika i Fizika Nebesnykh Tel, 19 (6), 560—568 (2003) [in Russian].
4. Starkov G. V. Planetary dynamics of auroral airglow. In: Physics of the near-Earth space, 409—499 (Apatity, 2000) [in Russian].
5. Starkov G. V., Fel'dshtejn Ya. I., Shevnina N. F. Connection of the sectorial structure of the interplanetary magnetic field with activity of aurorae. Geomagnetizm i Aeronomiia, 13 (5), 949—951 (1973) [in Russian].
6. Cumnock J. A., Sharber J. R., Heelis R. A., et al. Evolution of the global aurora during positive IMF Bzand varying IMF By conditions. J. Geophys. Res., 102 (A8), 17489—17497 (1997).
7. Elphinstone R. D., Jankowska K., Murphree J. S., Cogger L. L. The configuration of the auroral distribution for interplanetary magnetic field Bznorthward. I IMF Bxand Bydependencies as observed by the Viking satellite. J. Geophys. Res., 95 (5), 5791—5804 (1990).
8. Lassen K., Danielsen C. Quiet time pattern of auroral arcs for different directions of the interplanetary magnetic field in the Y-Z plane. J. Geophys. Res., 83 (11), 5277— 5284 (1978).
9. Liou K., Newell P. T., Meng C.-I., et al. Characteristics of the solar wind controlled auroral emissions. J. Geophys. Res., 103 (8), 17543—17558 (1998).
10. Shue J.-H., Newell P. T., Liou K., Meng C.-I. Influence of interplanetary magnetic field on global auroral patterns. J. Geophys. Res., 106 (A4), 5913—5926 (2001).
11. Shue J.-H., Newell P. T., Liou K., et al. Interplanetary magnetic field Bxasymmetry effect on auroral brightness. J. Geophys. Res., 107 (A8), 1197—1208 (2002).
12. Wing S., Newell P. T., Sibeck D. G., Baker K. B. A large statistical study of the entry of interplanetary magnetic field Y-component into the magnetosphere. Geophys. Res. Lett., 22, 2083—2086 (1995).
13. Zhang Y., McEwen D. J., Cogger L. L. Interplanetary magnetic field control of polar patch velocity. J. Geophys. Res., 108 (A5), 1640—1649 (2003).