Dynamic processes in the ionosphere during the geospace storm on 30 May and Solar eclipse on 31 May 2003
Heading:
1Grigorenko, Ye.I, 1Pazura, SA, 1Puliaiev, VA, 1Taran, VI, 2Chernogor, LF 1Institute of Ionosphere of the National Academy of Sciences of Ukraine and Ministry of Education and Science of Ukraine, Kharkiv, Ukraine 2V.N. Karazin National University of Kharkiv, Kharkiv, Ukraine |
Kosm. nauka tehnol. 2004, 10 ;(1):012–025 |
https://doi.org/10.15407/knit2004.01.012 |
Publication Language: Russian |
Abstract: Some results of the F region and topside ionosphere response to the 29–31 May 2003 severe geomagnetic storm (maximum index Kp= 8) are presented. The observations are carried out with the Kharkov incoherent scatter radar. Considerable storm effects in the ionosphere were revealed. Among them were deep electron density N depletion, uplifting in the peak height zmF2, unusual heating of plasma, decrease of relative concentration of hydrogen ions in the main phase of the storm, infringement of processes of the ionosphere-magnetosphere interaction. The geospace storm was also accompanied by generation of wave-like ionosphere disturbances. Some features of the ionosphere response to the 73 % solar eclipse on 31 May 2003 occurred after sunrise during the recovery phase of the geomagnetic storm are considered. It is shown that, during the eclipse, short-time (2–3 h) reforming the ionosphere to night conditions takes place. The effects of magnetic disturbance, solar flare and the peculiarities of ionosphere behaviour during sunrise period, that were being imposed on the ionosphere response to the solar eclipse, are also discussed.
|
References:
1. Akimov L. A., Grigorenko E. I., Taran V. I., et al. Integrated radio physical and optical studies of dynamic processes in the atmosphere and geospace caused by the solar eclipse of August 11, 1999. Zarubezhnaya radioelektronika. Uspekhi sovremennoi radioelektroniki, No. 2, 25—63 (2002) [in Russian].
2. Afraimovich E. L., Kosogorov E. A., Leonovich L. A., Pirog O. M. Global Pattern of Large-Scale Ionospheric Disturbances During the Magnetic Storm of September 25, 1998, as Inferred from GPS Network Data. Geomagnetizm i Aeronomiia, 42 (4), 491—498 (2002) [in Russian].
3. Bogovsky V. K., Grigorenko Ye. I., Emelyanov L. Ya., et al. Features of ionospheric parameters variations during the geocosmic storm of May 30, 2003. In: 3rd Ukrainian Conference for Perspective Space Researches: Abstracts, 142 (Katsiveli, Crimea, 2003) [in Russian].
4. Bogovsky V. K., Grigorenko Ye. I., Pazyura S. A., et al. The effects of the solar eclipse on May 31, 2003, developing on the background of the recovery phase of a magnetic storm. In: 3rd Ukrainian Conference for Perspective Space Researches: Abstracts, 143 (Katsiveli, Crimea, 2003) [in Russian].
5. Boitman O. N., Kalikhman A. D., Tashchilin A. V. Midlatitude ionosphere during the total solar eclipse of March 9, 1997: 1. Modeling of eclipse effects. Geomagnetizm i Aeronomiia, 39 (6), 45—51 (1999) [in Russian].
6. Brjunelli B. E., Namgaladze A. A. Ionospheric physics, 528 p. (Nauka, Moscow, 1987) [in Russian].
7. Banks P. M. The thermal structure of the ionosphere. Proceedings of the IEEE, 57 (3), 6—30 (1969) [in Russian].
8. Danilov A. D., Morozova L. D. Ionospheric storms in the F2 region - Morphology and physics (Review). Geomagnetizm i Aeronomiia, 25 (5), 705—721 (1985) [in Russian].
9. Krinberg I. A., Tashchilin A. V. Ionosphere and Plasmasphere, 189 p. (Nauka, Moscow, 1984) [in Russian].
10. Serebriakov B. E. Investigation of processes in the thermosphere during magnetic disturbances. Geomagnetizm i Aeronomiia, 22 (5), 776—781 (1982) [in Russian].
11. Taran V. I. A study of the natural and artificially disturbed ionosphere by the incoherent scatter method. Geomagnetizm i Aeronomiia, 41 (5), 659—666 (2001) [in Russian].
12. Chernogor L. F. Physics of Earth, Atmosphere, and Geospace from the Standpoint of System Paradigm. Radio Physics and Radio Astronomy, 8 (1), 59—106 (2003) [in Russian].
13. Bailey G. J., Moffett R. J., Murphy J. A. Calculated daily variations of O and H at mid-latitudes. II. Sunspot maximum results. J. Atmos. and Terr. Phys., 41, 471—482 (1979).
https://doi.org/10.1016/0021-9169(79)90038-2
14. Baron M. J., Hunsucker R. D. Incoherent scatter radar observations of the auroral zone ionosphere during the total solar eclipse of July 10, 1972. J. Geophys. Res., 78 (31), 7451—7460 (1973).
15. Buonsanto M. J. Millstone Hill Incoherent Scatter F Region Observations During the Disturbances of June 1991. J. Geophys. Res., 100 (A4), 5743—5755 (1995).
16. Chernogor L. F., Grigorenko Ye. I., Taran V. I., Tyrnov O. F. Ionospheric wave-like disturbances (WLD) following the September 23, 1998 solar flare from Kharkiv incoherent scatter radar observations. In: XXVII General Assembly of the International Union of Radio Science, Programme, Poster Presentations Maastricht Exhibition and Congress Centre (MECO, Maastricht the Netherlands, 17—24 august 2002, 2278 (2002).
17. Chernogor L. F., Grigorenko Ye. I., Taran V. I., Tyrnov O. F. Dynamic processes in the near-Earth plasma during the September 25, 1998 magnetic storm from Kharkiv incoherent scatter radar data. XXVII General Assembly of the International Union of Radio Science, Programme, Poster Presentations Maastricht Exhibition and Congress Centre (MECC), Maastricht the Netherlands, 17—24 august 2002, 2280 (2002).
18. Evans J. V., Holt J. M. Nighttime proton fluxes at Millstone Hill. Planet. Space Sci., 26 (8), 727—744 (1978).
https://doi.org/10.1016/0032-0633(78)90004-1
19. Foster J. C., Rich F. J. Prompt midlatitude electric field effects during severe geomagnetic storms. J. Geophys. Res., 103, 26367—26372 (1998).
20. Geisler J. E., Bowhill S. A. An investigation of ionosphere-protonosphere coupling. J. Atmos. and Terr. Phys., 27 (457), 1119 (1965).
https://doi.org/10.1016/0021-9169(65)90073-5
21. Mikhailov A. V., Foster J. C. Daytime thermosphere above Millstone Hill during severe geomagnetic storms. J. Geophys. Res., 102, 17275—17282 (1997).
22. Mikhailov A. V., Furster M. Some F2-layer effects during the January 06—11, 1997 CEDAR storm period as observed with the Millstone Hill incoherent scatter facility. J. Atmos. Solar-Terr. Phys., 61, 249—261 (1999).
https://doi.org/10.1016/S1364-6826(98)00129-1
23. Mishin E., Foster J. C., Potekhin A. P., et al. Ionospheric perturbations caused by quasi-periodic magnetic disturbances during the September 25, 1998 storm. In: EOS Trans. AGU, 81 No. 48, Fall Meeting, F 947 (San Francisco, USA, 2000).
24. Mishin E., Foster J. C., Rich F. J., Taran V. Prompt ionospheric response to short period solar wind variations during the magnetic cloud event Sep 25, 1998. In: EOS Trans. AGU, 82 No. 20, Spring Meeting, S 291 (San Francisco, USA, May 15, 2001).
25. Pavlov A. V. The role of vibrationally excited oxygen and nitrogen in the ionosphere during the undisturbed and geomagnetic Storm Period of 6—12 April 1990. Ann. Geophys., 16, 589—601 (1998).
26. Pavlov A. V., Buonsanto M. J., Schlesier A. C., et al. Comparison of models and data at Millstone Hill during the 5—11 June 1991 Storm. J. Atmos. Solar-Terr. Phys., 61, 263—279 (1999).
https://doi.org/10.1016/S1364-6826(98)00135-7
27. Richards P. G., Torr D. D. Seasonal, diurnal, and solar cyclical variations of the limiting H+ flux in the Earth's topside ionosphere. J. Geophys. Res., 90 (A6), 5261—5268 (1985).
28. Richards P. G., Torr D. G., Buonsanto M. J., et al. Ionospheric effects of the March 1990 magnetic storm: Comparison of theory and measurement. J. Geophys. Res., 99 (A12), 23359—23365 (1994).
29. Salah J. E., Oliver W. L., Foster J. C., Holt J. M. Observations of the May 30, 1984, Annular solar eclipse at Millstone Hill. J. Geophys. Res., 91 (A2), 1651 — 1660 (1986).
30. Shunk R. W., Nagy A. F. Electron temperature in the F region of the ionosphere: theory and observations. Rev. Geophys. Space Phys., 16 (3), 355—399 (1978).
31. Sterling D. L., Hanson W. B., Woodman R. F. Synthesis of data obtained at Jicamarca, Peru, during the September 11, 1969, eclipse. Radio Sci., 7 (2), 279—289 (1972).