Investigation of near-earth space objects by the use of the telescope AZT-8 with a CCD camera
1Abrosimov, VM, 2Kovalchuk, AN, 1Malevinskii, SV, 2Pinigin, GI, 1Savchenko, VV, 2Shulga, AV 1National Center of Space Facilities Control and Test of the State Space Agency of Ukraine, Yevpatoria, Crimea, Ukraine 2Scientific-Research Institute «Mykolaiv Astronomical Observatory», Mykolaiv, Ukraine |
Kosm. nauka tehnol. 2004, 10 ;(1):079-084 |
https://doi.org/10.15407/knit2004.01.079 |
Publication Language: Russian |
Abstract: In extending the range of artificial and natural objects observed in near-Earth space to faint magnitudes both telescope parameters and detection methods are of great importance. Possibilities and list of problems which can be solved by the use of the AZT-8 with a CCD camera are considered. It is expected that position accuracy for near-Earth space objects up to 20 magnitudes will be about 0.2–0.3" when the AZT-8 modernized is used for observation.
|
References:
1. Guseva I. S., Katkova E. V. Experimental observations of the geostationary satellites with AKD at Pulkovo. In: All-Russian Astronomical Conference, 57 (St.Petersburg, 2001) [in Russian ].
2. Duma D. P., Ivashchenko Iu. N., Shokin Iu. A. Determination of the high-precision coordinates of geostationary earth satellites by using a wide-angle astrograph with a special cassette. Kinematika i Fizika Nebes. Tel, 2 (2), 86—88 (1986) [in Russian].
3. The Law of Ukraine on State (National) Space Program of Ukraine 2003-2007, No. 203—IV (October 24, 2002) [in Ukrainian].
4. Kovalchuk A. N., Pinigin G. I., Shulga A. V. High-speed automatic system for registration of celestial objects of natural and artificial origin in the near-Earth space. In: Near-Earth Astronomy and problems of studying the small bodies of the solar system, 361—371 (INASAN, Moscow, 2000) [in Russian].
5. Kovalchuk A. Universal CCD-micrometer in Astronomy. Kinematika Fiz. Nebesn. Tel. Prilozhenie, No. 1, 97—100 (1999) [in Ukrainian].
6. Optical instruments. Directory, Vol. 8. Astronomical instruments. (Dom optiki, Moscow, 1980) [in Russian].
7. Polishchuk G. M., Malyshev V. V., Raikunov G. G., et al. A new concept for the development of space remote sensing means. In: Sistemnyj analiz i upravlenie kosmicheskimi kompleksami: 7th Intern. Conf.: Abstracts, Evpatoria, July 1-8, 2002, 4—5 (2002) [in Russian].
8. Kirichenko A. G., Kizyun L. M., Klimik V. U., et al. Catalogues of positions and orbital elements of the geosynchronous objects. Object observations for the perpose of collisions detection. In: Extension and connection of reference frames using CCD ground-based technique, 189— 193 (Atoll, Nikolaev, 2001).
9. Kovalchyk A., Shulga A., Martynov M. Combined CCD observational method of geostationary satellite, methodical and technical designs and results. In: Extention and connection of reference frames using ground-based CCD technique, 194—200 (Atoll, Nikolaev, 2001).
10. Mignard F. Observations of solar system objects with GAIA.I. Detection of NEOS. Astron. and Astrophys., 393, 727 (2002).
11. Rykhlova L., Barabanov S., Kasimenko T., et al. Investigations of artificial and natural space objects in the vicinity of the Earth. In: Extension and connection of reference frames using CCD ground-based technique, 161 — 170 (Atoll, Nikolaev, 2001).
12. Vishnevsky G. I., Gumerov R. I., Pinigin G. I., et al. Scientific and technical collaboration between Russian and Ukrainian author collectives on the development of astronomical instruments equipped with the advanced detection devices. Astron. and Astrophys. Transactions, 22 (4—5), 777— 786 (2003).
13. Vishnevsky G., Vydrevich M., Galyatkin I., et al. UV-IR CCD and Digital Cameras. In: Extension and Connection of Reference Frames using CCD ground-based Technique, 238—240 (Atoll, Nikolaev, 2001).