State and prospects of creating new generation microsatellites: new materials, nanotechnology and architecture

1Klymenko, Yu.A, 1Cheremnykh, ОК, 1Yatsenko, VA, 1Maslova, NV
1Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2001, 7 ;(2-3):053-065
https://doi.org/10.15407/knit2001.02.053
Publication Language: Russian
Abstract: 
Recent advances in the micro- and nanotechnologies for innovative space missions are reviewed. Capabilities, limitations and applications of the micro system technology are discussed. The following aspects are considered: concepts of microsattelites, new nanomaterials (fullerene, tubules, molecular devices, conducting polymers), and information hardware. The prospects for the development of molecular manufacturing for space industry are analysed.
Keywords: microsatellites, nanotechnologies, space instruments
References: 
1.  Vernitskaya T. V., Efimov O. N.  Polypyrrole: a conducting polymer; its synthesis, properties and applications. Usp. khim., 66 (5), 489—505 (1997) [in Russian].
https://doi.org/10.1070/RC1997v066n05ABEH000261
2. Grytsyk V. V. Information technologies and systems in space research: state and prospects. Kosm. nauka tehnol., 4 (4), 3—20 (1998) [in Ukrainian].
https://doi.org/10.15407/knit1998.04.003
3.  Eletskii A. V. Carbon nanotubes. Uspehi fiz. nauk, 167 (9), 945—972 (1997) [in Russian].
4.  Zubinskij A. Nanotechnology - reification of calculations, programmable matter [Nanotehnologija — oveshhestvlenie vychislenij, programmiruemaja materija]. Komp'juternoe obozrenie, No. 42, 38—42 (1999) [in Russian].
5. Ivanovskii A. L. Simulation of nanotubular forms of matter. Usp. khim., 68 (2), 119— 135 (1999) [in Russian].
https://doi.org/10.1070/RC1999v068n02ABEH000450
6. Konarev D. V., Lyubovskaya R. N. Donor-acceptor complexes and radical ionic salts based on fullerenes. Usp. khim., 68 (1), 23—44 (1999) [in Russian].
https://doi.org/10.1070/RC1999v068n01ABEH000460
7. Pomazanov M. V., Egorov V. A. Solar sail: principles of construction, control, and flights to asteroids. Kosmicheskie Issledovaniia, 37 (4), 397— 404 (1999) [in Russian].
8.  Soldatov E. S., Khanin V. V., Trifonov A. S., et al. Room temperature molecular single-electron transistor. Uspehi fiz. nauk, 168 (2), 217—219 (1998) [in Russian].
9.  Bredas J. L., Silbey R. Conjugated Polymers, 522 p. (Kluwer, Dordrecht, 1991).
https://doi.org/10.1007/978-94-011-3476-7
10.  Bruchez M. (Jr.), Moronne M., Gin P., et al. Semiconductor Nanocrystals as Fluorescent Biological Labels. Science, 281, 2013—2016 (1998).
https://doi.org/10.1126/science.281.5385.2013
11.  Chen J., Reed M. A., Rawlett A. M., et al. Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device. Science, 286, 1550—1552 (1999).
https://doi.org/10.1126/science.286.5444.1550
12.  Chen P., Wu X., Lin J. High H2 Uptake by Alkali-Doped Carbon Nanotubes Under Ambient Pressure and Moderate Temperatures. Science, 285, 91—93 (1999).
https://doi.org/10.1126/science.285.5424.91
13. Chiko L., Benedict L. X., Louie S. G., et al. Quantum Conductance of Carbon Nanotubes with Defects. Phys. Rev. B, 54 (4), 2600—2606 (1996).
https://doi.org/10.1103/PhysRevB.54.2600
14.  Collier C. P., Wong E. W., Belohradsky M., et al. Electronically Configurable Molecular-Based Logic Gates. Science, 285, 391—394 (1999).
https://doi.org/10.1126/science.285.5426.391
15.  Dagani R. Carbon-Based Electronics. Chemical & Engineering News, November 22, 11 — 12 (1999).
16.  Dagani R.  Light-Emiting Polymer Synthesis. Chemical & Engineering News, January 19, 9—10 (1998).
17.  Dagani R. Putting the «Nano» into Composites. Chemical & Engineering News, June 7, 25—37 (1999).
https://doi.org/10.1021/cen-v077n023.p025
18.  Datta S. Electronic Transport in mesoscopic systems, 377 p. (Univ. press, Cambridge, 1992).
19.  Dresselhaus M. S., Dresselhaus G., Eklund P. C. Science of Fullerenes and Carbon Nanotubes, 520 p. (Academic press, San-Diego, 1996).
20.  Drexler K. E. Molecular engineering: an approach to the development of general capabilities for molecular manipulations. Proc. National Academy of Sciences USA, 78, 5275—5278 (1988).
https://doi.org/10.1073/pnas.78.9.5275
21.  Drexler K. E. Molecular manufacturing for space systems: An overview. J. Brit. Interplanet. Soc., 45, 401 — 405 (1992).
22.  Drexler K. E. Nanosystems: Molecular Machinery, Manufacturing, and Computation, 452 p. (John Wiley and Sons, 1992).
23.  Ebbesen T. W. Carbon Nanotubes. Preparation and Properties, 225 p. (CRC Press, Boca Raton, Finland, 1997).
24.  Eigler D., Schweizer E. Positioning Single Atoms with a Scanning Tunneling Microscope. Nature, 344, 524—526 (1990).
https://doi.org/10.1038/344524a0
25.  Hanson D. J. NASA at 40: Science Looks Up. Chemical & Engineering News, March 16, 21—23 (1998).
https://doi.org/10.1021/cen-v076n011.p021
26.  Heath J. R., Kuekes P. J., Snider G. S., et al. A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology. Science, 280, 1716—1721 (1998).
https://doi.org/10.1126/science.280.5370.1716
27.  Hsieh B. R., Yu Y., Forsythe E. W., et al. A New Family of Highly Emissive Soluble Poly(p-phenylene vinylene) Derivatives. A Step toward Fully Conjugated Blue-Emitting Poly(p-phenylene vinylenes). J. Amer. Chem. Soc., 120 (1), 231—232 (1998).
https://doi.org/10.1021/ja973553r
28.  Kohler A., dos Santos D. A., Beljonne D., et al. Charge Separation in Localized and Delocalized Electronic States in Polymeric Semiconductors. Nature, 392, 903— 906 (1998).
https://doi.org/10.1038/31901
29.  Kong J., Franklin N. R., Zhou C., et al. Nanotube Molecular Wires   as   Chemical   Sensors   //   Science.—2000.—287.— P. 622—625.
30.  Martel R., Shea H. R., Avouris P. Ring Formation in Single-Wall Carbon Nanotubes. J. Phys. Chem. B, 36 (103), 7551—7556 (1999).
https://doi.org/10.1021/jp991513z
31.  Merkle R. Computational Nanotechnology. Nanotechnology, 2 (3), 134—141 (1991).
https://doi.org/10.1088/0957-4484/2/3/005
32.  Merkle R. Self Replicating Systems and Molecular Manufacturing. J. Brit. Interplanet. Soc., 45 (10), 407— 413 (1992).
33.  Musa I., Munindrasdasa D. A. I., Amaratunga G. A. J., et al. Eccleston Ultralow-threshold field emission from conjugated polymers. Nature, 395, 362—365 (1998).
https://doi.org/10.1038/26444
34.  Robinson E. Y, Helvajian H., Janson S. W. Big Benefits from Tiny Technologies. Aerospase Amer., October 1996, 38—43 (1998).
35.  Saab A. P., Laub M., Srdanov V. I., et al. Oxidized Thin Films of C60: A New Humidity-Sensing Material. Adv. Mater., 10 (6), 462—465 (1998).
https://doi.org/10.1002/(SICI)1521-4095(199804)10:6<462::AID-ADMA462>3.0.CO;2-Y
36.  Sariciftchi N. S. Role of Buckminsterfullerene C60. in Organic Photoelectric Devices. Prog. Quant. Electr., 19, 131 — 159 (1995).
https://doi.org/10.1016/0079-6727(94)00012-N
37.  Tans J. S., Verschueren A. R. M., Dekker C. Room-Temperature Transistor Based on a Single Carbon Nanotube. Nature, 393, 49—51 (1998).
https://doi.org/10.1038/29954
38.  Urbas A., Fink Y., Thomas E. L. One-Dimensionally Periodic Dielectric Reflectors from  Self-Assembled Block Copolymer-Homopolymer Blends. Macromolecules, 32 (14), 4748—4750 (1999).
https://doi.org/10.1021/ma9903207
39.  Wong S. S., Joselevich E., Woolley A. T., et al. Covalently Function-alized Nanotubes as Nanometer-Sized Probes in Chemistry and Biology. Nature, 394, 52—55 (1998).
https://doi.org/10.1038/27873
40.  Yao Z., Postma H. W. C., Leon B., et al. Carbon nanotube intramolecular junctions. Nature, 402, 273— 276 (1999).