Physical effects of the January 15, 2022, powerful Tonga volcano explosion in the Earth-atmosphere-ionosphere-magnitosphere system

1Chernogor, LF
1V.N. Karazin National University of Kharkiv, Kharkiv, Ukraine
Space Sci. & Technol. 2023, 29 ;(2):54-77
https://doi.org/10.15407/knit2023.02.054
Publication Language: Ukrainian
Abstract: 
The Tonga volcano explosion has already been dealt with in many papers, which investigate the effects of tsunamis, atmospheric explosive waves, travelling ionospheric disturbances, the perturbations of the equatorial anomaly, rearrangement of the ionospheric currents and of the atmospheric wind pattern, disturbances in the geomagnetic field, etc. It is reliably established that the explosion of the Tonga volcano caused a number of processes on a global scale. However, the modeling of these processes is absent in the literature. The volcano is capable to launch a whole complex of physical processes in all geophysical fields within the Earth–(lithosphere, tectonosphere, ocean)–atmosphere–ionosphere–magnetosphere (EAIM) system. Analysis of the entire set of processes in the system caused by a unique explosion and volcanic eruption is a pressing scientific issue.
       The scientific objective of this study is to perform a comprehensive analysis and modeling of the main physical processes within the EAIM system, which accompanied the powerful explosion of the Tonga volcano on January 15, 2022. The article attempts to model or estimate the magnitude of the main effects caused by the explosion and eruption of the Tonga volcano. A comprehensive analysis and modeling of the main physical processes in the EAIM system, which accompanied the powerful explosion and eruption of the Tonga volcano on January 15, 2022, has been performed. The energetics of the volcano and of the atmosphericexplosivewave has been estimated. The thermal energy of the volcano attained ~ 3.9x1018J, while the mean thermal power has been estimated to be 9.1x1013W. The energy of the atmosphericexplosivewavewas about 16–17 MtTNT. The volcanic flow with initial pressure of tens of atmosphereswas determined to reach a few kilometers height, while the volcanic plume attained the peak altitude of 50–58 km and moved 15Mm westward. The main parameters of the plume have been estimated. The plume mean power was 7.5 TW, and its heat flux 15 MW/m2. With such a flux, one should have expected the appearance of a fire tornado with an ~0.17 s–1 angular frequency or a 37 s tornado rotation period. An analytical relation has been derived for estimating the maximum altitude of the plume rise. The main contribution to the magnitude of this altitude makes the volumetric discharge rate.
        The volcano explosion was accompanied by the generation of seismic and atmospheric explosive waves, tsunamis, Lamb waves, atmospheric gravity waves, infrasound, and sound, which propagated on a global scale. It is important to note that the powerful atmosphericexplosivewave could launch a secondary seismic wave and a secondary tsunami, which was one of the manifestations of subsystem couplings in the EAIM system. The propagation of powerful waves was accompanied by nonlinear distortions of the wave profiles and non-linear attenuation as a result of self-action of the waves. The electric processes in the troposphere are associated with spraying the eruption products, the electrification of the constituent particles in the plume, a charge separation, perturbations in the global electric circuit, and with an increase in the atmospheric electric field, the electric conductivity, and in the electric current. The electric effect in the ionosphere is due to an increase in the strength of the ionospheric electric field by one or two orders of magnitude, which resulted in the secondary processes in the magnetosphere and in the inner radiation belt. The magnetic effect of the submarine volcano explosion and eruption was established to be significant (~ 100–1,000 nT) but local. The magnetic effect in the ionosphere was due to the perturbations of the ionospheric dynamo current system under the action of the ionospheric hole (∆B ~ 0.1–1 nT) and due to the generation of the external current in the field of atmospheric waves (∆B ~ 1–10 nT). Dusting the atmosphere with the eruption plume acted to scatter solar radiation by aerosols, to disturb radiation balance in the Earth surface–ocean–atmosphere system, to cool the atmosphereat the air-earth boundary, and to lead to triggering effects.
         The volcano explosion acted to generate aperiodic (ionospheric hole) and quasi-sinusoidal (wave) perturbations. Wave perturbations exhibited two characteristic speeds, ~300 m/s, which is close to the speed of the Lamb wave, and 700–1,000 m/s, which is characteristic of atmospheric gravity waves at ionospheric heights. The magnetospheric effects are due to, first of all, powerful electromagnetic waves in the ~ 10–100 kHz range from tens of to hundreds of thousands lightning discharges that occurred within the volcanic plume. The energy and power of these radio emissions have been estimated to be 40–400 GJand 40–400 GW, respectively. These emissions acted to cause precipitation of relativistic electrons from the radiation belt into the ionosphere and to enhance the ionization in the ~ 70–120 km altitude range. It is important to note that the burst of precipitation was triggered. The Alfven waves that propagated from their source along magnetic field lines had a certain effect on the magnetosphere. The direct and reverse, positive and negative couplings between the components of the EAIM system have been determined and validated.
Keywords: atmosphere, earthquake, ionosphere, magnetosphere, parameter disturbance, physical effects, Tonga volcano explosion, tsunami
References: 
1. Ed. Avdyushin S.I., Sedunov Yu.S., Borisenkov E.P. et al. (1991). Atmosphere. Handbook. (Reference Data and Models).(Leningrad: Gidrometeoizdat.) [in Russian].
2. Isaev N. V., SorokinV. M., Chmyrev V.M., Serebryakova O.N.,Yaschenko A.K. (2002). Disturbance of the Electric Field in the Ionosphere by Sea Storms and Typhoons. Cosmic Research. 40(6), 591-597.
3. Isaev N. V., SorokinV. M., Chmyrev V.M., Serebryakova O.N. (2002). Ionospheric electric fields related to sea storms and typhoons. Geomagnetism and Aeronomy. 42(5), 638-643.
4. Raist P. (1987). Aerosols. Introduction to the Theory. (Moscow: Mir) [in Russian].
5.Chernogor L. F. (2012). Physics and ecology of the catastrophes. (Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ.) [in Russian].
6. Chernogor L. F. Physics of powerful radio emission in geospace. (Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ.) [in Russian].
7. Chernogor L. F. (2020). Parameters of the Infrasonic Signal Generated in the Atmosphere by Explosion of Powerful Volcano. Physics of atmosphere and geospace. 1(1), 5-20.
8. Chernogor L. F., ShevelevM. B.A statistical study of the explosive waves launched by the Tonga super-volcano on January 15, 2022. Space science and technology.2022.
[In press].
9. Aa E., Zhang S.-R., Erickson P. J., Vierinen J., Coster A. J., Goncharenko L. P., Spicher A., Rideout W. (2022). Significant Ionospheric Hole and Equatorial Plasma Bubbles After the 2022 Tonga Volcano Eruption. Geophysical Research Letters.20(7), e2022SW003101.
10. Aa E., Zhang S.-R., Wang W., Erickson P. J., Qian L., Eastes R., Harding B. J., Immel T. J., Karan D. K., Daniell R. E., Coster A. J., Goncharenko L. P., Vierinen J., Cai X., Spicher A. (2022). Pronounced Suppression and X-Pattern Merging of Equatorial Ionization Anomalies After the 2022 Tonga Volcano Eruption. Journal of Geophysical Research: Space Physics. 127(6), e2022JA030527.
11. Amores A., Monserrat S., Marcos M., Argüeso D., Villalonga J., Jordà G., Gomis D. (2022). Numerical Simulation of Atmospheric Lamb Waves Generated by the 2022 Hunga-Tonga Volcanic Eruption. Geophysical Research Letters. 49(6), e2022GL098240.
12. Astafyeva E., Maletckii B., Mikesell T. D., Munaibari E., Ravanelli M., Coisson P., Manta F., Rolland L. (2022). The 15 January 2022 Hunga Tonga eruption history as inferred from ionospheric observations. Geophysical Research Letters. 49(10), e2022GL098827.
13. Brodsky E. E., Kanamori H., Sturtevant B. A seismically constrained mass discharge rate for the initiation of the May 18, 1980 Mount St. Helens eruption. Journal of Geophysical Research. 1999. 104(B12), P. 29387-29400.
14. Burt S. (2022). Multiple airwaves crossing Britain and Ireland following the eruption of Hunga Tonga-Hunga Ha'apai on 15 January 2022. Weather.Special Issue: The January 2022 eruption of Hunga Tonga-Hunga Ha'apai. 77(3), 76-81.
15.Carr J. L., Horváth Á., Wu D. L., Friberg M. D. (2022). Stereo plume height and motion retrievals for the record-setting Hunga Tonga-Hunga Ha'apai eruption of 15 January 2022. Geophysical Research Letters. 49, e2022GL098131.
16. Carvajal M., Sepúlveda I., Gubler A., Garreaud R. (2022). Worldwide signature of the 2022 Tonga volcanic tsunami. Geophysical Research Letters. 49(6), e2022GL098153.
17. Chen C.-H., Zhang X., Sun Y.-Y., Wang F., Liu T.-C., Lin C.-Y., Gao Y., Lyu J., Jin X., Zhao X., Cheng X., Zhang P., Chen Q., Zhang D., Mao Z., Liu J.-Y. (2022). Individual Wave Propagations in Ionosphere and Troposphere Triggered by the Hunga Tonga-Hunga Ha'apai Underwater Volcano Eruption on 15 January 2022. Remote Sensing. 14(9), 2179.
18. Chernogor L.F. (2022). Effects of the Tonga volcano explosion on January 15, 2022. International Conference "Astronomy and Space Physics in the Kyiv University"in part of the World Science Day for Peace and Development. October 18 -21, 2022. Kyiv, Ukraine. Book of Abstracts.12-13.
19. Chernogor L.F. (2022). Electrical Effects of the Tonga Volcano Unique Explosionon January 15, 2022. International Conference "Astronomy and Space Physics in the Kyiv University"in part of the World Science Day for Peace and Development. October 18 -21, 2022. Kyiv, Ukraine. Book of Abstracts.79-80.
20. Chernogor L.F. (2022). Magnetospheric Effects That Accompanied the Explosion ofthe Tonga Volcano on January 15, 2022. International Conference "Astronomy and Space Physics in the Kyiv University"in part of the World Science Day for Peace and Development. October 18 -21, 2022. Kyiv, Ukraine. Book of Abstracts.81-82.
21. Chernogor L.F. (2022). Magnetic Effects of the Unique Explosion of the TongaVolcano. International Conference "Astronomy and Space Physics in the Kyiv University"in part of the World Science Day for Peace and Development. October 18 -21, 2022. Kyiv, Ukraine. Book of Abstracts. 89-90.
22. Chernogor L.F. (2022).The Tonga super-volcanoexplosion as a subject of appliedphysics.International Scientific Conference "Electronics and Applied Physics", APHYS 2022. 18-22 October, 2022. Kyiv, Ukraine[In Press].
23. Chernogor L.F, ShevelevM.B. (2022). Statistical characteristics of atmosphericwaves, generated by the explosion of the Tonga volcano on January 15, 2022. International Conference "Astronomy and Space Physics in the Kyiv University"in part of the World Science Day for Peace and Development. October 18 -21, 2022. Kyiv, Ukraine. Book of Abstracts.85-86.
24. Chernogor L.F, Mylovanov Y.B., Dorohov V.L. (2022). Ionospheric Effectsaccompanying the January 15, 2022 Tonga Volcano Explosion. International Conference "Astronomy and Space Physics in the Kyiv University"in part of the World Science Day for Peace and Development. October 18 -21, 2022. Kyiv, Ukraine. Book of Abstracts.83-84.
25. Ern M., Hoffmann L., Rhode S., Preusse P. (2022). The mesoscale gravity wave response to the 2022 Tonga volcanic eruption: AIRS and MLS satellite observations and source backtracing. Geophysical Research Letters.49(10), e2022GL098626.
26. Gossard E. E., Hooke W. H. Waves in the Atmosphere. New York: Elsevier, 1975. 456 p.
27. Harding B. J., Wu Y.-J. J., Alken P., Yamazaki Y., Triplett C. C., Immel T. J., Gasque L. C., Mende S. B., Xiong C. (2022). Impacts of the January 2022 Tonga Volcanic Eruption on the Ionospheric Dynamo: ICON-MIGHTI and Swarm Observations of Extreme Neutral Winds and Currents. Geophysical Research Letters. 49(9), e2022GL098577.
28. Heidarzadeh M., Gusman A. R., Ishibe T., Sabeti R., Šepić J. (2022). Estimating the eruption-induced water displacement source of the 15 January 2022 Tonga volcanic tsunami from tsunami spectra and numerical modelling. Ocean Engineering. 261, 112165.
29. Imamura F., Suppasri A., Arikawa T., Koshimura S., Satake K., Tanioka Y. (2022). Preliminary Observations and Impact in Japan of the Tsunami Caused by the Tonga Volcanic Eruption on January 15, 2022. Pure and Applied Geophysics. 179, 1549-1560.
30. Johnson J.B. (2003). Generation and propagation of infrasonic airwaves from volcanic explosions.Journal of Volcanology and Geothermal Research. 2003. 121, № 1-2, 1-14. D
31. Kubota T., Saito T., Nishida K. (2022). Global fast-traveling tsunamis driven by atmospheric Lamb waves on the 2022 Tonga eruption. Science.377(6601), 91-94.
32. Kulichkov S. N., Chunchuzov I. P., Popov O. E., Gorchakov G. I., Mishenin A. A., Perepelkin V. G., Bush G. A., Skorokhod A. I., Vinogradov Yu. A., Semutnikova E. G., Šepic J., Medvedev I. P., Gushchin R. A., Kopeikin V. M., Belikov I. B., Gubanova D. P., Karpov A. V., Tikhonov A. V. (2022). Acoustic-Gravity Lamb Waves from the Eruption of the Hunga-Tonga-Hunga-Hapai Volcano, Its Energy Release and Impact on Aerosol Concentrations and Tsunami. Pure and Applied Geophysics.179, 1533-1548.
33. Le G., Liu G., Yizengaw E., Englert C. R. (2022). Intense equatorial electrojet and counter electrojet caused by the 15 January 2022 Tonga volcanic eruption: Space- and ground-based observations. Geophysical Research Letters. 49(11), e2022GL099002.
34. Lin J.-T., Rajesh P. K., Lin C. C. H., Chou M.-Y., Liu J.-Y., Yue J., Hsiao T.-Y., Tsai H.-F., Chao H.-M., Kung M.-M. (2022). Rapid Conjugate Appearance of the Giant Ionospheric Lamb Wave Signatures in the Northern Hemisphere After Hunga-Tonga Volcano Eruptions. Geophysical Research Letters. 49(8), e2022GL098222.
35. Lynett P. (2022). The Tsunamis Generated by the Hunga Tonga-Hunga Ha'apai Volcano on January 15, 2022. PREPRINT (Version 1) available at Research Square.DOI:10.21203/rs.3.rs-1377508/v1.
36. Lynett P., McCann M., Zhou Z. et al. (2022). Diverse tsunamigenesis triggered by the Hunga Tonga-Hunga Ha'apai eruption. Nature. 609, 728-733.
37. Matoza R. S., Fee D., Assink J. D., Iezzi A. M., Green D. N., Kim K., Toney L., Lecocq T., Krishnamoorthy S., Lalande J. M., Nishida K., Gee K. L., Haney M. M., Ortiz H. D., Brissaud Q., Martire L., Rolland L., Vergados P., Nippress A., Park J., Shani-Kadmiel S., Witsil A., Arrowsmith S., Caudron C., Watada S., Perttu A. B., Taisne B., Mialle P., Le Pichon A., Vergoz J., Hupe P., Blom P. S., Waxler R., De Angelis S., Snively J. B., Ringler A. T., Anthony R. E., Jolly A. D., Kilgour G., Averbuch G., Ripepe M., Ichihara M., Arciniega-Ceballos A., Astafyeva E., Ceranna L., Cevuard S., Che I.-Y., De Negri R., Ebeling C. W., Evers L. G., Franco-Marin L. E., Gabrielson T. B., Hafner K., Harrison R. G., Komjathy A., Lacanna G., Lyons J., Macpherson K. A., Marchetti E., McKee K. F., Mellors R. J., Mendo-Pérez G., Mikesell T. D., Munaibari E., Oyola-Merced M., Park I., Pilger C., Ramos C., Ruiz M. C., Sabatini R., Schwaiger H. F., Tailpied D., Talmadge C., Vidot J., Webster J., Wilson D. C. (2022). Atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga. Science.377(6601). P. 95-100.
38. Matoza R. S., Fee D., Assink J. D., Iezzi A. M., Green D. N., Kim K., Toney L., Lecocq T., Krishnamoorthy S., Lalande J. M., Nishida K., Gee K. L., Haney M. M., Ortiz H. D., Brissaud Q., Martire L., Rolland L., Vergados P., Nippress A., Park J., Shani-Kadmiel S., Witsil A., Arrowsmith S., Caudron C., Watada S., Perttu A. B., Taisne B., Mialle P., Le Pichon A., Vergoz J., Hupe P., Blom P. S., Waxler R., De Angelis S., Snively J. B., Ringler A. T., Anthony R. E., Jolly A. D., Kilgour G., Averbuch G., Ripepe M., Ichihara M., Arciniega-Ceballos A., Astafyeva E., Ceranna L., Cevuard S., Che I.-Y., De Negri R., Ebeling C. W., Evers L. G., Franco-Marin L. E., Gabrielson T. B., Hafner K., Harrison R. G., Komjathy A., Lacanna G., Lyons J., Macpherson K. A., Marchetti E., McKee K. F., Mellors R. J., Mendo-Pérez G., Mikesell T. D., Munaibari E., Oyola-Merced M., Park I., Pilger C., Ramos C., Ruiz M. C., Sabatini R., Schwaiger H. F., Tailpied D., Talmadge C., Vidot J., Webster J., Wilson D. C. (2022). Supplementary Materials forAtmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga. Science.377(6601).
39. Minami T. (2017). Motional Induction by Tsunamis and Ocean Tides: 10 Years of Progress. Surv. Geophys. 38, 1097-1132.
40. Otsuka S. (2022). Visualizing Lamb waves from a volcanic eruption using meteorological satellite Himawari-8. Geophysical Research Letters. 49(8), e2022GL098324.
41. Poli P.,Shapiro N. M. (2022). Rapid Characterization of Large Volcanic Eruptions: Measuring the Impulse of the Hunga Tonga Ha'apai Explosion From Teleseismic Waves. Geophysical Research Letters. 49(8),e2022GL098123
42. Ramírez-Herrera M. T., Coca O., Vargas-Espinosa V. (2022). Tsunami Effects on the Coast of Mexico by the Hunga Tonga-Hunga Ha'apai Volcano Eruption, Tonga. Pure and Applied Geophysics. 179, 1117-1137.
43. Saito S. (2022). Ionospheric disturbances observed over Japan following the eruption of Hunga Tonga-Hunga Ha'apai on 15 January 2022. Earth, Planets and Space.74, 57.
44. Schnepf N. R., Minami T., Toh H., Nair M. C. (2022). Magnetic Signatures of the 15 January 2022 Hunga Tonga-Hunga Ha'apai Volcanic Eruption. Geophysical Research Letters. 49(10),e2022GL098454
45. Shinbori A., Otsuka Y., Sori T., Nishioka M., Perwitasari S., Tsuda T., Nishitani N. Electromagnetic conjugacy of ionospheric disturbances after the 2022 Hunga Tonga-Hunga Ha'apai volcanic eruption as seen in GNSS-TEC and SuperDARN Hokkaido pair of radars observations. Earth Planets Space. 2022. 74, № 106.
46. Tanioka Y., Yamanaka Y., Nakagaki T. (2022). Characteristics of the deep sea tsunami excited offshore Japan due to the air wave from the 2022 Tonga eruption. Earth, Planets and Space.74, 61.
47. Terry J. P., Goff J., Winspear N., Bongolan V. P., Fisher S. (2022). Tonga volcanic eruption and tsunami, January 2022: globally the most significant opportunity to observe an explosive and tsunamigenic submarine eruption since AD 1883 Krakatau. Geoscience Letters. 9, 24.
48. The Encyclopedia of Volcanoes (Second Edition), Academic Press, 2015.1421 p.
49. Themens D. R., Watson C., Žagar N., Vasylkevych S., Elvidge S., McCaffrey A., Prikryl P., Reid B., Wood A., Jayachandran P. T. (2022). Global propagation of ionospheric disturbances associated with the 2022 Tonga volcanic eruption. Geophysical Research Letters. 49(7), e2022GL098158.
50. Vergoz J., Hupe P., Listowski C., Le Pichon A., Garcés M. A., Marchetti E., Labazuy P., Ceranna L., Pilger C., Gaebler P., Näsholm S. P., Brissaud Q., Poli P., Shapiro N., De Negri R., Mialle P. (2022). IMS observations of infrasound and acoustic-gravity waves produced by the January 2022 volcanic eruption of Hunga, Tonga: A global analysis. Earth and Planetary Science Letters. 591, 117639.
51. Wall M. Tonga undersea volcano eruption released up to 18 megatons of energy. 2022.
52. Watt A. D. International series of monographs in electromagnetic waves. New York: Pergamon, 1967. 724 p.
53. Witze A. Why the Tongan volcanic eruption was so shocking. Nature. 2022. 602. P. 376-378.
54. Wright C. J., Hindley N. P., Alexander M. J., Barlow M., Hoffmann L., Mitchell C. N., Prata F., Bouillon M., Carstens J., Clerbaux C., Osprey S. M., Powell N., Randall C. E., Yue J. (2022). Surface-to-space atmospheric waves from Hunga Tonga-Hunga Ha'apai eruption. Nature.
55. Yamazaki Y., Soares G., Matzka J. (2022). Geomagnetic Detection of the Atmospheric Acoustic Resonance at 3.8 mHz During the Hunga Tonga Eruption Event on 15 January 2022. Journal of Geophysical Research: Space Physics.127(7), e2022JA030540.
56. Yuen D. A., Scruggs M. A., Spera F. J., Zheng Y., Hu H., McNutt S. R., Thompson G., Mandli K., Keller B. R., Wei S. S., Peng Z., Zhou Z., Mulargia F., Tanioka Y. (2022). Under the surface: Pressure-induced planetary-scale waves, volcanic lightning, and gaseous clouds caused by the submarine eruption of Hunga Tonga-Hunga Ha'apai volcano. Earthquake ResearchAdvances. 2(3), 100134. https://doi.org/10.1016/j.eqrea.2022.100134
57. Zhang S.-R., Vierinen J., Aa E., Goncharenko L. P., Erickson P. J., Rideout W., Coster A. J., Spicher A. (2022). 2022 Tonga Volcanic Eruption Induced Global Propagation of Ionospheric Disturbances via Lamb Waves. Frontiers in Astronomy and Space Sciences. 9, 871275.