Specific acoustic-gravity wave modes in isothermal atmosphere

1Fedorenko, AK, 1Klymenko, Yu.O, 1Cheremnykh, OK, 1Kryuchkov, Ye.I, 1Zhuk, IT
1Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine
Space Sci. & Technol. 2023, 29 ;(2):45-53
https://doi.org/10.15407/knit2023.02.045
Publication Language: Ukrainian
Abstract: 
In the paper, we show that the spectrum of acoustic-gravity waves in an isothermal atmosphere includes four specific evanescent modes. These modes are the solutions of the system of hydrodynamic equations for small atmospheric disturbances under the assumption that one of the quantities (horizontal or vertical components of particle velocity, density fluctuations, or temperature) is equal to zero. Three of the four specific modes (the Lamb wave, the Brunt-Väisälä oscillation, and the f-mode) are well known, but they were previously obtained as independent solutions.
         The recent discovery by the authors of the evanescent γ-mode made it possible to show that all four specified modes form a certain family of special modes of the isothermal atmosphere. On the spectral diagram of the frequency and the wave vector, there are four dispersion curves of these special modes in which one of the perturbed quantities is equal to zero. These curves belong to the evanescent region of the acoustic-gravity wave spectrum. They intersect each other at five points. It is shown that the specific modes cannot interact at the intersection points. The polarization ratios between two perturbed quantities have a different sign on either side of a particular curve if one of the quantities on this curve is zero. These properties can be used as indicators of the specific modes in experimental studies of the evanescent spectrum of AGWs. By using polarization relations, the possibility of observing these modes in the Earth’s atmosphere and on the Sun is also analyzed.
Keywords: acoustic-gravity wave, isothermal atmosphere, specific evanescent wave modes
References: 
1. Kryuchkov E. I., Fedorenko A. K. (2012). Peculiarities of energy transport in the atmosphere by acoustic gravity waves. Geomagn. Aeron. 52. Р. 251-257.
https://doi.org/10.1134/ S0016793212010057.
2. Fedorenko A. K., Zakharov I. V. (2012). Specific oscillatory mode in the polar thermosphere. Kosm. nauka tehnol. 18, N 2. Р. 26-32.
3. Fedorenko А.К., Kryuchkov E.I., Cheremnykh O.K., Melnychuk S.V., Zhuk I.T. Жук І. Т. (2022). Properties of acoustic-gravity waves at the boundary of two isothermal media. Kinematika i Fizika Nebesnykh Tel. 38, N6, Р. 79-95.
https://doi.org/10.15407 /kfnt2020.04.015.
4. Cheremnykh O. K., Fedorenko A. K., Kryuchkov E. I., Selivanov Y. A. (2019). Evanescent acoustic-gravity modes in the isothermal atmosphere: systematization, applications to the Earth's and Solar atmospheres. Ann. Geophys. 37, N 3. P. 405-415.
5. Cheremnykh O. K., Fedorenko A. K., Selivanov Y. A., Cheremnykh S. O. (2021). Continuous spectrum of evanescent acoustic-gravity waves in an isothermal atmosphere. Mon. Notic. Roy. Astron. Soc. 503, № 4. P. 5545-5553.
htttps://doi.org/10.1093/mnras/st.ab845.
6. Deubner F.-L., D. Fleck, C. Marmolino, G. Severino. (1990). Dynamics of the solar atmosphere. IV. Evanescent waves of small amplitude. Astron. Astrophys. 236. 509-514.
7. Gossard E., Hooke W. Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves: Their Generation and Propagation. Elsevier Scientific Publishing Company. 1975. 456 p.
8. Hines C.O. (1960). Internal gravity waves at ionospheric heights. Can. J. Phys. 38. P. 1441-1481.
9. Ichimoto K., Hamana S., Kumagai K., Sakurai T., Hiei E. (1990). Phase relation between velocities and temperature fluctuations of the solar 5-minute oscillation. In: Osaki Y., Shibahashi H. (eds) Progress of Seismology of the Sun and Stars. Lecture Notes in Physics. 367. Springer, Berlin, Heidelberg.
10. Jones W. L. (1969). Non-divergent oscillations in the Solar Atmosphere. Solar Phys. 7. P. 204-209.
11. Lamb H. Hydrodynamics. Dover, New York, 1932. 362 p.
12. Roy A., Roy S., Misra A.P. (2019). Dynamical properties of acoustic-gravity waves in the atmosphere. J. of Atmos. and Solar-Terr. Phys. 186. P. 78-81.
13. Tolstoy I. The theory of waves in stratified fluids including the effects on gravity and rotation. (1963). Rev. of Modern Phys. 35, N 1. P. 207 - 230.
14. Vadas S. L., Fritts M. J. (2005). Thermospheric responses to gravity waves: Influences of increasing viscosity and thermal diffusivity. J. Geophys. Res. 110, D15103,
15. Waltercheid R. L., Hecht J. H. (2003). A reexamination of evanescent acoustic-gravity waves: Special properties and aeronomical significance. J. Geophys. Res. 108, D11. 4340.
16. Zhang S. D., Yi F. (2002). A numerical study of propagation characteristics of gravity wave packets propagating in a dissipative atmosphere. J. Geophys. Res. 107. D14. P.1-9.