Space biology projects in Ukraine: nowadays trends
Heading:
1Kordyum, EL 1M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv, Ukraine |
Space Sci. & Technol. 2023, 29 ;(1):36-51 |
https://doi.org/10.15407/knit2023.01.036 |
Publication Language: Ukrainian |
Abstract: A brief overview of the results of the implementation of biological projects in the Target Program for scientific space research of the National Academy of Sciences of Ukraine (2018–2022) is presented to current fields of world space biology: astrobiology, cellular and molecular biology, plant biology, animal biology, and gravitational biology. |
Keywords: animal biology, astrobiology, cellular and molecular biology, gravitational biology, plant biology |
References:
1. Artemenko O. A. (2021). The study of the functional state of lipid rafts in the cytoplasmic membrane of Pisum sativum seedlings under clinorotation. Space Sci. Technol., 27, № 5, 35-46.
2. Borisova T. (2018). Nervous system injury in response to contact with environmental, engineered and planetary micro- and nano-sized particles. Front. Physiol., 9, 728.
3. Borisova T. (2019). Express assessment of neurotoxicity of particles of planetary and interstellar dust. Microgravity, 5, № 2.
4. Borisova T. A., Krisanova N. V., Pozdnyakova N. G., et al. (2018). Project: Development of a new method for analysis of planetary dust toxicity aiming on perspective space missions. Space Sci. Technol., 24, № 6, 69-73.
5. Borisova T., Pozdnyakova N., Dudarenko M., et al. (2021). GABAA receptor agonist cinazepam and its active metabolite 3-hydroxyphenazepam act differently at the presynaptic site. Eur. Neuropsychopharmacol., 45, 39-51.
6. Borysov A., Tarasenko A., Krisanova N. (2020). Plastic smoke aerosol: Nano-sized particle distribution, absorption/fluorescent properties, dysregulation of oxidative processes and synaptic transmission in rat brain nerve terminals. Environ. Pollution, 263, Part A, 114502.
7. Brandt A., De Vera J., Onofri S. (2015). Viability of the lichen Xanthoria elegans and its symbionts after 18 months of space exposure and simulated Mars conditions on the ISS. IJA,, 14, № 3, 411-425.
8. Braun M., Böhmer M., Häder D-P., et al. (2018). Gravitational Biology I: Gravity Sensing and Graviorientation in Microorganisms and Plants (Springer Briefs in Space Life Sciences). 1st ed., 110 p.
9. Cannon A., Salmi M., Bushart T. (2015). Changes during gravity perception and response in a single cell. Methods Mol. Biol., 1309, 199-207
10. Chatterjee A., Wang A., Lera M. (2010). Lunar soil simulant uptake produces a concentration-dependent increase in inducible nitric oxide synthase expression in murine RAW 264.7 macrophage cells. J. Toxicol. Environ. Health, 73, № 9, 623-626.
11. Chen H., Dong J., Wang T. (2021). Autophagy in plant abiotic stress management. Int. J. Mol. Sci., 15, 22, 8, 4075.
12. Clement J. (2012). Gene expression microarrays in microgravity research: toward the identification of major space genes. Innovations in Biotechnology. Ed. E. C. Agbo, 319-346.
13. Darbelley N. (1988). Effets de la stimulation gravitropique et de la microgravité sur la prolifération et la différenciation cellulaires dans les racines primaires. Bull. Soc. Bot., 135, 229-250 [in French].
14. de Carvalho S. D., Uetanabaro A. P., Kato R., et al. (2022). The space-exposed kombucha microbial community member Komagataeibacter oboediens showed only minor changes in its genome after reactivation on Earth. Front. Microbiol., 13, 782175.
15. de la Torre R., Sancho L., Horneck G., et al. (2010). Survival of lichens and bacteria exposed to outer space conditions. Results of the Lithopanspermia experiments. Icarus, 208, № 2, 735-748.
16. de Vera J. P., Alawi M., Backhaus T., et al. (2019). Limits of life and the habitability of Mars: The ESA Space Experiment BIOMEX on the ISS. Astrobiology, 19, № 2, 145-157.
17. Digby J., Firn R. (1995). The gravitropic set-point angle (GSA): the identification of an important developmentally controlled variable governing plant architecture. Plant Cell Environ.,18, 1434-1440.
18. Fabon G., Monforte L., Tomas-Las-Heras R. (2012). Dynamic response of UV-absorbing compounds, quantum yield and the xanthophyll cycle to diel changes in UV-B and photosynthetic radiations in an aquatic liverwort. J. Plant Physiol., 169, 20-26.
19. Ferl R., Kohn J., Denison F. (2015). Spaceflight induces specific alterations in the proteomes of Arabidopsis. Astrobiology, 15, 32-56.
20. Gaier J. (2005). The effects of lunar dust on EVA systems during the Apollo missions. NASA/TM-2005-213610/REV1 [in English].
21. Góes-Neto A., Kukharenko O., Orlovska I. (2021). Shotgun metagenomic analysis of kombucha mutualistic community exposed to Mars-like environment outside the International Space Station. Environ. Microbiol., 23, № 7, 3727-3742.
22. Goldermann M., Hanke W. (2001). Ion channel are sensitive to gravity changes. Microgravity Sci. Technol., 13, 35-38.
23. Halstead T., Dutcher F. (1987). Plants in space, Annu. Rev. Plant Physiol., 38, 317-345.
24. Hangarter R. P. (1997). Gravity, light and plant form. Plant Cell Environ., 20, № 6, 796-800.
25. Hanke W., Florian P., Kohn M., et al. (2019). Gravitational Biology II: Interaction of Gravity with Cellular Components and Cell Metabolism (SpringerBriefs in Space Life Sciences) Paperback, 110.
26. Horneck G., Stöffler D., Ott S. et al. (2008). Microbial rock inhabitants survive hypervelocity impacts on Mars-like host planets: first phase of lithopanspermia experimentally tested. Astrobiology, 8, № 1, 17-44.
27. Horneck G., David M., Mancinelli R. (2010). Space Microbiology. Microbiol. Mol. Biol. Rev., 74, № 1, 121-156.
28. Hoson T. (2014). Plant growth and morphogenesis under different gravity conditions: relevance to plant life in space. Life., 4, № 2, 205-216.
29. Iqbal Z., Javed M., Gull S. (2019). Total phenolic contents of two varieties of Crocus sativus and their antioxidant activity. Int. J. Biosci., 14, № 3, 128-132.
30. Jaillais Y., Ott T. (2020). The nanoscale organization of the plasma membrane and its importance in signaling: A proteolipid perspective. Plant Physiol., 182, 1682-696.
31. Jiang Y., Yang L., Ferjani A., et al. (2021). Multiple functions of the vacuole in plant growth and fruit quality. Mol. Horticulture, 1, № 4.
32. Kawaguchi Y., Yang Y., Kawashiri N. (2013). The possible interplanetary transfer of microbes: assessing the viability of Deinococcus spp. under the ISS Environmental conditions for performing exposure experiments of microbes in the Tanpopo mission. Orig. Life Evol. Biosph., 43, № 4-5, 411-418.
33. Kern V., Schwuchow J., Reed D., et al. (2005). Gravitropic moss default to spiral growth on the clinostat and in microgravity during spaceflight. Planta, 222, № 1, 149-157.
34. Khorkavtsiv Ya. D., Lobachevs'ka O. V., Kyiak N. Ya. (2021). Involvement of DNA methylation in gravimorphogenesis of the mosses Polytrichum arcticum and Physcomitrella patens. Conference dedicated to the 75th anniversary of the Institute of Plant Physiology and Genetics of the National Academy of Sciences of Ukraine (Kyiv, June 17), 203-205 [in Ukrainian].
35. Kittang A., Iversen T., Fossum K., et al. (2014). Exploration of plant growth and development using the European Modular Cultivation System facility on the International Space Station. Plant Biol., 16, 528-538.
36. Klymchuk D., Brown C., Chapman D. (2010). Ultrastructure organization of cells in soybean root tips in microgravity. J. Gravit. Physiol., 6, 97-98 [in English].
37. Kordyum E. (1994). Effects of altered gravity on plant cell processes: results of recent space and clinostatic experiments. Adv. Space Res., 14, № 8, 1477-1485.
https://doi.org/10.1016/0273-1177(94)90388-3
38. Kordyum E. (2014). Plant cell gravisensitivity and adaptation to microgravity. Plant Biol., 16, Suppl. 1, 79-90 [in English].
39. Kordyum E., Hasenstein K. (2021). Plant biology for space exploration - Building on the past, preparing for the future. Life Sci. Space Res., 29, 1-7.
40. Kordyum E., Artemenko O., Hasenstein K. (2022). Lipid rafts and plant gravisensitivity. Life., 12, № 11, 1809.
41. Kordyum E., Bulavin I., Vorobyova T. (2018). Clinorotation impacts the plasmalemma lipid bilayer and its functional domains- rafts in plant cells. Front. Physiol. Environ. Aviation Space Physiol., 314-317.
42. Kordyum E., Chapman D., Brykov V. (2019). Plant cell development and aging may accelerate in microgravity. Acta Astronautica, 157, 157-161 [in English].
43. Kordyum E. L. Klimenko O. M., Bulavin I. V., et al. (2018). Sensitivity of lipid rafts of plant cells to the influence of of modulated microgravity (clinorotation). Space Sci. Technol., 24, № 4, 48-58.
44. Kordyum E., Martin G., Zaslavsky V., et al. (1999). DNA content and differentiation of root apical cells of Brassica rapa plants grown in microgravity. J. Gravit. Physiol., 6, 119-120 [in English].
45. Kordyum E. L., Nedukha O. M., Grakhov V. P., et al. (2015). Investigations of the influence of modulated microgravity on the lipid bilayer of the cytiplasmic membrane of plant cells. Space Sci. Technol., 21, № 3, 40-47.
46. Kozyrovska N., Reva O., Podolich O., et al. (2021). To other planets with upgraded millennial kombucha in rhythms of https://doi.org/10.3389/fspas.2021.701158 sustainability and health support. Front. Astron. Space Sci., 8, 182.
47. Kraft M. (2013). Plasma membrane organization and function: moving past lipid rafts. Mol. Biol. Cell., 24, 2765-2768.
48. Krisanova N., Pozdnyakova A. Pastukhov M., еt al. (2019). Vitamin D3 deficiency in puberty rats causes presynaptic malfunctioning through alterations in exocytotic release and uptake of glutamate/GABA and expression of EAAC-1/GAT-3 transporters. Food Chem. Toxicol., 123, 142-150.
49. Kyiak N. Ya., Lobachevs'ka O. V., Khorkavtsiv Ya. D. (2021). Morpho-physiological reactions of gravisensitivity and adaptation to UV-radiation of the moss Bryum caespiticium Hedw. from Antarctica Space Sci. Technol. 27, № 5, 47-59.
50. Lam C. W., Scully R. R., Zhang Y., et al. (2013).Toxicity of lunar dust assessed in inhalation-exposed rats. Inhal. Toxicol., 12, 661-678.
51. Latch J., Hamilton R., Holian A., et al. (2008). Toxicity of lunar and Martian dust simulants to alveolar macrophages isolated from human volunteers. Inhal. Toxicol., 20, 157-165.
52. Lee I., Podolich O., Bertram B. (2022). Metagenome-assembled genomes of Komagataeibacter from kombucha exposed to Mars-like conditions reveal the secrets in tolerating extraterrestrial stresses. J. Microbiol. Biotechnol., 32, № 8, 967-975.
53. Lingwood D., Simons K. (2010). Lipid rafts as a membrane-organizing principle. Science, 327, 46-50.
54. Lobachevska O., Khorkavtsiv Ya., Kyyak N., et al. (2018). Adaptive role of gravidependent morphological variability in mosses. 34th Annual Meeting of the ASGSR. Abstracts. MD USA, Bethesda (October-November, 2018), 148-152 [in English].
55. Lobachevs'ka O. V., Kyiak N. Ya., Khorkavtsiv Ya. D. (2019). Morpho-functional peculiarities of the moss Weissia tortilis Spreng. protonemata cells with different gravisensitivity. Space Sci. Technol., 25, № 2, 60-70.
56. Lobachevska O., Kyyak N., Kordyum E., et al. (2021). The role of gravimorphoses in moss adaptation to extreme environment. Ukr. Bot. J., 78, № 1, 69-79.
57. Lobachevska O., Kyyak N., Kordyum E., et al. (2022). Gravi-sensitivity of mosses and their gravity-dependent ontogenetic adaptations. Life, 12, № 11, 1782.
58. Lytvyn D., Olenieva V., Yemets A., et al. (2018). Histochemical analysis of tissue-specific acetylation of α-tubulin as a response for autophagy development in Arabidopsis thaliana induced by different stress factors. Cytol. Genet., 52, № 4, 245-252.
59. Medina F-J., Herranz R. (2010). Microgravity environment uncouples cell growth and cell proliferation in root meristematic cells: the mediator role of auxin. Plant Signal. Behav., 5, 176-178.
60. Medina F-J. (2020). Space explorers need to be space farmers: What we know and what we need to know about plant growth in space. Mètode Science Studies J. Annu. Rev., 11, 55-62.
61. Merkys A., Laurinavichius R. (1990). Plant growth in space. Fundamentals of Space Biology. Eds M. Asashima, G. M. Malacinski. Berlin: Springer-Verlag, 64-89 [in English].
62. Millar C., Johnson R., Edelmann J., et al. (2011). An endogenous growth pattern of roots is revealed in seedlings grown in microgravity. Astrobiology, 11, 787-797.
63. Newsham K., Robinson, S. (2009). Responses of plants in Polar Regions to UV-B exposure: a meta-analysis. Global Change Biol., 15, № 11, 2574-2589.
64. Obolenskaya M., Dotsenko V., Martsenyuk O., et al. (2021). A new insight into mechanisms of interferon alpha neurotoxicity: Expression of GRIN3A subunit of NMDA receptors and NMDA-evoked exocytosis. Progress Neuro-Psychopharmacol. Biol. Psychiatry, 110, 110317.
65. Oleneva V., Lytvyn D., Yemets A., et al. (2017). Tubulin acetylation accompanies atophagy development induced by different abiotic stimuli in Arabidopsis thaliana. Cell. Biol. Int., 43, № 9, 1056-1064.
66. Oleneva V., Lytvyn D., Yemets A., et al. (2018). Expression of kinesins, involved in the development of autophagy in Arabidopsis thaliana, and the role of tubulin acetylation in the interaction of ATG8 protein with microtubules. Factors Exp. Evol. Organisms, 22, 162-168.
67. Orlovska I., Podolich O., Kukharenko O., et al. (2021). Bacterial cellulose retains robustness but its synthesis declines after exposure to a Mars-like environment simulated utside the International Space Station. Astrobiology, 21, № 6, 706-717.
68. Orlovska I., Podolich O., Kukharenko Oet al. (2022).The conceptual approach to the use of postbiotics based on bacterial membrane nanovesicles for prophylaxis of astronauts health disorders. Space Sci. Technol., 28, № 6.
69. Ott E., Kawaguchi Y., Kölbl D., et al. (2020). Molecular repertoire of Deinococcus radiodurans after 1 year of exposure outside the International Space Station within the Tanpopo mission. Microbiome, 8, 150.
70. Paliienko K., Pastukhov A., Babič M., et al. (2020). Transient coating of γ-Fe2O3 nanoparticles with glutamate for its delivery to and removal from brain nerve terminals. Beilstein J. Nanotechnol., 11, 1381-1393.
71. Panitz C., Frösler J., Wingender J., et al. (2019). Tolerances of Deinococcus geothermalis biofilms and planktonic cells exposed to space and simulated martian conditions in low earth orbit for almost two years. Astrobiology, 19, № 8, 979-994.
72. Pastukhov A., Borisova T. (2018a). Combined application of glutamate transporter inhibitors and hypothermia discriminates principal constituent processes involved in glutamate homo- and heteroexchange in brain nerve terminals. Ther. Hypothermia Tem. Manag., 8, № 3, 143-149.
73. Pastukhov A., Borisova T. (2018b). Levetiracetam-mediated improvement of decreased NMDA-induced glutamate release from nerve terminals during hypothermia. Brain Res., 1699, 69-78.
74. Pastukhov A. O., Krisanova N. V., Pozdnyakova N. G., et al. (2022). Development of neuroprotection approaches for longterm space missions. Space Sci. Technol., 28, № 6, 52-62.
75. Paul A., Amalfitano C., Ferl. R. (2012). Plant growth strategies are remodeled by spaceflight. BMC Plant Biology, 12, 232-255.
76. Paul A., Elardo S., Ferl R. (2022). Plants grown in Apollo lunar regolith present stress-associated transcriptomes that inform prospects for lunar exploration. Communications Biol., 5, 1-9,
77. Podolich O., Kukharenko O., Haidak A., et al. (2019). Multimicrobial kombucha culture tolerates Mars-like conditions simulated on low-earth orbit. Astrobiology, 19, № 2, 183-196.
78. Podolich O., Kukharenko O., Zaets I., et al. (2020). Fitness of outer membrane vesicles from Komagataeibacter intermedius is altered under the impact of simulated Mars-like stressors outside the International Space Station. Front Microbiol., 26, № 11, 1268.
79. Polulyakh Yu., Zhadko S., Klimchuk D. (1989). Plant cell plasma membrane structure and properties under clinostating . Adv. Space Res., 9, 71-74 [in English].
https://doi.org/10.1016/0273-1177(89)90057-4
80. Poulet L., Zeidler C., Bunchek J., et al. (2021). Crew time in a space greenhouse using data from analog missions and Veggie Life Sci. Space Res, 31, 101-112.
81. Pozdniakova N. H., Pastukhov A. O., Dudarenko M. V., et al. (2018). Enrichment of the inorganic analogue of martian dust with the novel carbon nanoparticles obtained during combustion of carbohydrates and assesment of its meurotoxicity. Space Sci. Technol., 24, № 2, 60-71.
82. Pozdnyakova N., Dudarenko M., Borisova T. (2019). Age-dependency of levetiracetam effects on exocytotic GABA release from nerve terminals in the hippocampus and cortex in norm and after perinatal hypoxia. Cell. Mol. Neurobiology, 39, 701-714.
83. Prasad B., Richter R., Vadakedath N., et al. (2020). Exploration of space to achieve scientific breakthroughs. Biotechnol. Adv., 43, 107572 https://doi.org/10.1016/j.biotechadv.2020.107572
84. Rawat N., Singla-Pareek S., Pareek A. (2021). Membrane dynamics during individual and combined abiotic stresses in plants and tools to study the same. Physiol. Plant., 171, 653-676.
85. Reva O. N., Zaets I. E., Ovcharenko L. P., et al. (2015). Metabarcoding of the kombucha microbial community grown in different microenvironments. AMB Express, 5, № 1, 35.
86. Roychoudhry S., Bianco M., Kieffer M., et al. (2013). Auxin control gravitropic setpont angle in higher plant lateral branches. Curr. Biol., 23, 1497-1504. [in English]
87. Sack F. (1991). Plant gravity sensing. Int. Rev. Cytol., 127, 193-252.
https://doi.org/10.1016/S0074-7696(08)60695-6
88. Sack F. (1993). Gravitropism in protonemata of the moss Ceratodon. Bull. Torrey Bot. Club, 25, 36 - 44 [in English].
89. Sancho L.G, de la Torre R., Horneck G., et al. (2007). Lichens survive in space: results from the 2005 LICHENS experiment. Astrobiology, 7, № 3, 443-454.
90. Schwuchow J., Kim D., Sack F. (1995). Caulonemal gravitropism and amyloplast sedimentation in the moss Funaria. Can. J. Bot., 73, 1029-1035.
91. Schwuchow J., Kern V., White N., et al. (2002). Conservation of the plastid sedimentation zone in all moss genera with known gravitropic protonemata. J. Plant Growth Regul., 21, 146-155.
92. Shadrina R. Y., Horyunova I. I., Blume Ya. B., Yemets A. I. (2020). Autophagosome formation and transcriptional activity of ATG8 genes in Arabidopsis root cells during the development of autophagy under microgravity conditions. Reports NAS of Ukraine, 9, 77-85.
93. Shadrina R.Y., Yemets A.I., Blume Ya.B. (2019). Development of autophagy as an adaptive response of Arabidopsis thaliana plants to microgravity conditions. Factors Exp. Evolution Organisms, 25, 327-332.
94. Sieber M., Hanke W., Kohn F. (2014). Modification of membrane fluidity by gravity. Open J. Biophysics, 4, 105-111. https://doi.org/10.4236/ojbiphy.2014.44012 https://doi.org/10.1139/b95-112 [in English].
95. Sieber M., Kaltenbach S., Hanke W., et al. (2016). Conductance and capacity of plain lipid membranes under conditions of variable gravity. J. Biomed. Sci. Engineering, 9, № 8, 361-366.
96. Slenska K., Kordyum E. (1995). Gravity, cellular membranes and associated processes: an introduction. Adv. Space Res., 17, № 6/7, 141-142.
https://doi.org/10.1016/0273-1177(95)00626-P
97. Sroka Z. (2005). Antioxidative and antiradical properties of plant phenolics. J. Biosci., 60, 833-843.
98. Wheeler R. (2010). Plants for human life support in space: From Myers to Mars. Gravit. Space Res., 23, 25-35 [in English].
99. Wheeler R. (2017). Agriculture for space: people and places paving the way. Open Agriculture, 14-32.
100. Wink M. (1993). The plant vacuole: a multifunctional compartment. J. Exp. Bot., 44, 231-246 [in English].
101. Wolverton C., Kiss J. (2009). An update on plant space biology. Gravit. Space Biol., 22, 13-20 [in English].
102. Yamagishi A., Kawaguchi Y., Hashimoto H. (2018). Environmental data and survival data of Deinococcus aetherius from the Exposure Facility of the Japan Experimental Module of the International Space Station obtained by the Tanpopo mission. Astrobiology, 18, 1369-1374. Bibcode:2018AsBio..18.1369Y.
103. Yemets A., Shadrina R., Horyunova I., et al. (2020). Development of autophagy in plant under cells under microgravity: The role of microtubules and ATG8 proteins in autophagosome formation. Space Research in Ukraine. Kyiv: Academperiodica, 79-84 [in English].
104. Yu M., Cui Y. N., Zhang X., et al. (2020). Organization and dynamics of functional plant membrane microdomains. Cell. Mol. Life Sci., 77, 275-287.
105. Zabel P., Bamseya M., Schubert D., Tajmar M. (2016). Review and analysis of over 40 years of space plant growth systems. Life Sci. Space Res., 10, 1-16.
106. Zhao J., Dixon R. (2013). AMATE transporters facilitate vacuolar uptake of epicatechin 3′-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis. Plant Cell, 21, 2323-2340.