Morpho-functional peculiarities of the moss Weissia tortilis Spreng. protonemata cells with different gravisensitivity
Heading:
1Lobachevska, OV, 1Kyyak, NYa., 1Khorkavtsiv, Ya.D 1Institute of Ecology of the Carpathians of the National Academy of Sciences of Ukraine, L’viv, Ukraine |
Space Sci. & Technol. 2019, 25 ;(2):60-70 |
https://doi.org/10.15407/knit2019.02.060 |
Publication Language: Ukrainian |
Abstract: Gravitropism of bryophytes is species-specific. It depends on the ecological factors and species life strategy. The purpose of the research is to determine the relationship between the morphology of Weissia tortilis Spreng. protonemata cells in the process of differentiation, their resistance to UV irradiation, and the variability of gravitropism. It has been established that the formation of a dense turf from short, unramified chloronematical stolons as an additional growth form of the moss protonemata provides screening of the caulonemata stolons from radiation. We have shown that due to peculiarities of morphogenesis and stolon growth only caulonemata cells of W. tortilis protonemata are gravisensitive. The environmental resistance and the specificity of biochemical reactions depending on the level of gravisensitivity have been determined on the basis of ccomparative investigations of gravisensitivity and carbohydrate metabolism of Ceratodon purpureus Brid and Weissia tortilis Spreng. . It is assumed that the revealed specificity is due to the different tolerance of bryophytes to the influence of stress factors: Ceratodon purpureus is a cosmopolitan gravisensitive moss species, whereas Weissia tortilis is an arid species with gravitropism only at the caulonemata stage.
|
Keywords: bryophytes, carbohydrate metabolism, gravisensitivity, UV irradiation |
References:
1. Bachurina H. F., Melnychuk V. M. (1988). Flora of mosses of the Ukrainian SSR. Kyiv: Naukova Dumka.
2. Hrodzynskyi D. M. (2013) Adaptive strategy of physiological processes in plants. Kyiv: Naukova Dumka.
3. Hudkov I. M. (2016). Radiobiology. Kyiv: NUBiP Ukrainy.
4. Demkiv O. T., Sytnyk K. M. (1985). Morphogenesis of arhegoniate. Kyiv: Naukova dumka.
5. Demkiv O. T., Khorkavtsiv Ya. D, Pundiak O. I. (2009). Gravitation as a form-forming factor of moss development. Plant physiology: problems and prospects of development, No. 2, 403—410.
6. Ivanov V. B. (1982). Active dyes in biology. Moscow: Science.
7. Kardash O. R., Khorkavtsiv Ya. D., Demkiv L. O. (1988). Growth and morphogenesis Weissia tortilis (Schwaegr.) C. Müll. from different locality. Ukr. Botanical J., 45(2), 17—21.
8. Karpets Yu. V., Kolupaev Yu. E. (2009). Plant response to hyperthermia: molecular-cellular processes. Bull. Kharkiv Nat. Agrarian Univ. Ser. Biology, No. 1, 19—39.
9. Kyyak N. Ya. (2005). Influence of phenolic compounds on physiological and biochemical parameters in shoots of water moss Fontinalis antyperitica Hedw. Sci. Notes Ternopil State Pedagogical Univ. named after Volodymyr Hnatyuk. Ser: Biol., No. 3, 81—87.
10. Kyyak N. Ya. (2015). Peculiarities of physiological indexes of water regime in the bryophytes with a different tolerance to water deficit. Visnyk of Lviv Univ. Biol. ser., 70, 245—255.
11. Kyyak N. Ya., Baik O. L., Kit N. A. (2017). Morphophysiological adaptation of bryophytes to environmental factors on the devastated territories of sulphur extraction. ScienceRise: Biol. Sci., 5(8), 33—38.
4. Demkiv O. T., Sytnyk K. M. (1985). Morphogenesis of arhegoniate. Kyiv: Naukova dumka.
5. Demkiv O. T., Khorkavtsiv Ya. D, Pundiak O. I. (2009). Gravitation as a form-forming factor of moss development. Plant physiology: problems and prospects of development, No. 2, 403—410.
6. Ivanov V. B. (1982). Active dyes in biology. Moscow: Science.
7. Kardash O. R., Khorkavtsiv Ya. D., Demkiv L. O. (1988). Growth and morphogenesis Weissia tortilis (Schwaegr.) C. Müll. from different locality. Ukr. Botanical J., 45(2), 17—21.
8. Karpets Yu. V., Kolupaev Yu. E. (2009). Plant response to hyperthermia: molecular-cellular processes. Bull. Kharkiv Nat. Agrarian Univ. Ser. Biology, No. 1, 19—39.
9. Kyyak N. Ya. (2005). Influence of phenolic compounds on physiological and biochemical parameters in shoots of water moss Fontinalis antyperitica Hedw. Sci. Notes Ternopil State Pedagogical Univ. named after Volodymyr Hnatyuk. Ser: Biol., No. 3, 81—87.
10. Kyyak N. Ya. (2015). Peculiarities of physiological indexes of water regime in the bryophytes with a different tolerance to water deficit. Visnyk of Lviv Univ. Biol. ser., 70, 245—255.
11. Kyyak N. Ya., Baik O. L., Kit N. A. (2017). Morphophysiological adaptation of bryophytes to environmental factors on the devastated territories of sulphur extraction. ScienceRise: Biol. Sci., 5(8), 33—38.
12. Kyyak N. Ya., Khorkavtsiv Ya. D. (2015). Adaptation of the bryophytes to water deficit in the dump area at sulfur deposit sites. Ukr. Botan. J., 72(6), 566—573.
https://doi.org/10.15407/ukrbotj72.06.566
https://doi.org/10.15407/ukrbotj72.06.566
13. Kyyak N. Ya., Khorkavtsiv Ya. D. (2016). Estimation of the oxidative stress in moss Pohlia nutans (Hedw.) Lindb. depending on the influence of gravity. Space Sci. and Technol., 22(4), 58—66.
14. Lazarenko A. S. (1959). Observation of morphology and ecology of the regenerative protonemata in the tortilla rural (Tortula ruralis Hedw.) and desert (T. desertorum Broth.). Ukr. Botan. J., 16(5), 55—64.
15. Lazarenko A. S., Kovalenko A. P. (1961). Some spiral structures of leafy mosses protonemata. Ukr. Botan. J., 18 (6), 89—98.
15. Lazarenko A. S., Kovalenko A. P. (1961). Some spiral structures of leafy mosses protonemata. Ukr. Botan. J., 18 (6), 89—98.
16. Lakyn H. F. (1990). Biometrics. Moskva: Vysshaia Shcola.
17. Lobachevska O. V., Kyyak N. Ya., Khorkavtsiv Ya. D., Kit N. A. (2017). Gravity dependent modification of reproductive development of mosses. Ukr. Botan. J., 74(5), 488—496.
18. Lobachevska O. V., Khorkavtsiv Ya. D., Kyyak N. Ya., Kit N. A., Danylkiv I. S. (2015). Gravimorphogenesis of the moss gametophyte. Space Sci. and Technol., 21(4), 94—102.
19. Workshop on Agrochemistry (2001). Moskva: Izdatel’stvo MHU [in Russian].
20. Khorkavtsiv Ya. D., Kordium Ye. L., Lobachevs’ka O. V., Kyyak N. Ya., Kit N. A. (2015). Branching protonemata of Ceratodon purpureus in conditions of changed gravitation. Ukr. Botan. J., 72(6), 588—595.
21. Braun M., Bohmer, H der D.-P., Hemmersbach R., Palme K. (2018). Gravitational Biology. 1. Gravity sensing and graviorientation in microorganism and plants. Berlin: Springer.
22. Brown C. S., Tipathy B. C., Stutte G. W. (1996). Photosynthesis and carbohydrate metabolism in microgravity. Plants in Space Biol,, Sendai: Tohoku University Press, 127—134.
23. Chaban Ch. I., Kern V. D., Ripetsky R. T., Demkiv O. T., Sack F. (1998). Gravitropism in caulonemata of the moss Pottia intermedia. J. Bryol., 20, 287—299.
23. Chaban Ch. I., Kern V. D., Ripetsky R. T., Demkiv O. T., Sack F. (1998). Gravitropism in caulonemata of the moss Pottia intermedia. J. Bryol., 20, 287—299.
24. Chazotte B. (2011). Labeling Nuclear DNA Using DAPI. Cold Spring Harbor Protocols, 83—86.
25. Cove D., Benzanilla M., Harries P., Quatrano R. (2006). Mosses as model systems for the study of metabolism and development. Ann. Rev. Plant Biol, 57, 497—520.
26. Glime J. M. (2017). Bryophyte Ecology. Vol. 1. Physiological Ecology. Houghton: Michigan Technol. Univ. URL: http://www.bryoecol.mtu.edu/ (Last accessed: 10.04.2019).
27. Greenwood J. L., Stark L. R. (2014). Rate of drying determines extent of desiccation tolerance in Physomitrella patens. Functional Plant Biol., 41, 460—467.
27. Greenwood J. L., Stark L. R. (2014). Rate of drying determines extent of desiccation tolerance in Physomitrella patens. Functional Plant Biol., 41, 460—467.
28. Hasenstein K. H., Deoli N. (2016). Radiation effects on Brassica seeds and seedlings. 41st COSPAR Scientific Assembly (was cancelled). Abstracts. URL: http://cospar2016.tubitak.gov.tr/en/ (Last accessed: 10.04.2019).
29. Kordyum E. L. (2014). Plant cell gravisensitivity and adaptation to microgravity. Plant Biol., 16(1), 79—90.
29. Kordyum E. L. (2014). Plant cell gravisensitivity and adaptation to microgravity. Plant Biol., 16(1), 79—90.
30. Moulia B., Fournier M. (2009). The power and control of gravitropic movements in plants: a biochemical and systems biology view. J. Exp. Bot., 60 (2), 461—486.
31. Musgrave M. E., Kuang A., Xia Y., Staut S. C., Bingham G. E., Briarty G., Levinskikh M. A., Sychev V. N., Podolski I. G. (2000). Gravity independence of seed-to-seed cycling in Brassica rapa. Planta, 210, 400—406.
32. Newsham K. K., Robinson S. A. (2009). Responses of plants in polar regions to UVB exposure: a meta-analysis. Global Change Biol., 15(11), 2574—2589.
33. Phillips J., Oliver M., Bartels D. (2002). Molecular genetics of desiccation-tolerant systems. M. Black and H. W. Pritchard (eds.). Desiccation and survival in plants: Drying without dying. Wallingford: CABI Publishing.
34. Robinson S. A., Waterman M. J. (2014). Sunsafe bryophytes: photoprotection from excess and damaging solar radiation. Advs Photosynthesis and Respiration, 37, 113—130.
34. Robinson S. A., Waterman M. J. (2014). Sunsafe bryophytes: photoprotection from excess and damaging solar radiation. Advs Photosynthesis and Respiration, 37, 113—130.