Project: Development of a new method for analysis of planetary dust toxicity aiming on perspective space missions

1Borisova, TA, 1Krisanova, NV, 1Pozdnyakova, NG, 1Pastukhov, AO, 1Borysov, AA, 1Dudarenko, MV, 1Paliienko, KO, 1Shatursky, OYa.
1Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
Space Sci. & Technol. 2018, 24 ;(6):69-73
https://doi.org/10.15407/knit2018.06.069
Publication Language: Ukrainian
Abstract: 
The manned extraterrestrial missions and planetary exploration require an assessment of the toxicity of planetary dust. Preparation of perspective space missions (especially Lunar station-related upcoming plans) requires urgent development of a methodology for the rapid assessment of toxicity of environmental compounds.
             Recently, the working group of the project was the first who showed the absence of significant neurotoxic effects of Lunar and Martian dust simulants, but the toxic properties of a mixture of Martian dust simulant particles and carbon nanoparticles. These experimental data were published in peer-reviewed journals, such as Microgravity Science and Technology (Pozdnyakova et al., 2017) and in special issue of American Institute of Aeronautics and Astronautics (Dunne et al., 2010). The proposed project involves the development of a new methodology, evaluation algorithm and equipment, as well as relevant models that can predict and determine biosecurity of dust particles.
Keywords: biosafety, manned extraterrestrial missions, method for dust toxicity evaluation, planetary and interstellar dust, risk assessment, toxicity of dust
References: 
1. Nervous system injury in response to contact with environmental, engineered and planetary micro- and nanosized particles. Front Physiol. 2018.  9.  P.  728.
2. Borisova T., Himmelreich N. Centrifuge-induced Hypergravity: [3H]GABA and L-[14C]glutamate Uptake, Exocytosis and Efflux Mediated by High-Affinity, SodiumDependent Transporters. Adv. Sp. Res. 2005. 36. P. 1340—1345.
3. Borisova T., Kasatkina L. Glutamate transporters of blood platelets as potential peripheral markers to analyze changes of glutamate transport activity in brain under altered gravity conditions. J. Gravit. Physiol . 2007. 14. P. 81—82.
4. Borisova T., Krisanova N. Ground-based hypergravity simulated modeling changed the effects of the glutamate transporter inhibitor on the carrier-mediated glutamate release in low [Na +] media from rat brain nerve terminals. J. Gravit. Physiol.  2006. 13. P.137—138.
5. Borisova T., Krisanova N. Presynaptic transporter-mediated release of glutamate evoked by the protonophore FCCP increases under altered gravity conditions. Adv. Sp. Res.  2008.  42.  P. 1971—1979.
6. Borisova T., Krisanova N. Presynaptic release of glutamate by heteroexchange under altered gravity conditions. Microgravity Sci. Tec.  2009.  21.  P. 197—201.
7. Borisova T., Krisanova N., Borуsov A., Sivko R., Ostapchenko L., Babic M., Horak D. Manipulation of brain nerve terminals by an external magnetic field using D-mannose-coated γ-Fe2O3 nano-sized particles and their effects on glutamate transport. Beilstein J. Nanotechnol. 2014.  5.  P.778—788.
8. Borisova T., Krisanova N., Himmelreich N. Exposure of animals to artificial gravity conditions leads to the alteration of the glutamate release from rat cerebral hemispheres nerve terminals. Adv. Sp. Res.  2004.  33. P. 1362—1367.
9. Borisova T., Krisanova N., Himmelreich N. Artificial gravity loading increases the effects of the glutamate transporter inhibitors on the glutamate release and uptake in rat brain nerve terminals. Microgravity Sci. Tec.  2006.  XVIII-3/4. P. 230—233.
10. Borisova T., Nazarova A., Dekaliuk M., Krisanova N., Pozdnyakova N., Borysov A., Sivko R., Demchenko A. P. Neuromodulatory properties of fluorescent carbon dots: effect on exocytotic release, uptake and ambient level of glutamate and GABA in brain nerve terminals. Int. J. Biochem.Cell Biol.  2015.  59.  P. 203—215.
11. Dunne M., Sadhukhan A., Rehders M., Brix K., Vogt P. M., Jokuszies A., Mirastschijski U., Borisova T., Slenzka K., Vogt J., Rettberg P., Rabbow E. Effects of different space relevant environmental stressors including Lunar Dust on microorganisms and human cells of different tissues. 40th International Conference on Environmental Systems, Published by the American Institute of Aeronautics and Astronautics, Inc., AIAA 2010-6076. P. 1—21.
12. Genc S., Zadeoglulari Z., Fuss S. H., Genc K. The adverse effects of air pollution on the nervous system. J. Toxicol. 2012.  P. 782462.
13. Horák D., Beneš M., Procházková Z., Trchová M., Borysov A., Pastukhov A., Paliienko K., Borisova T. Effect of O-methylβ-cyclodextrin-modified magnetic nanoparticles on the uptake and extracellular level of l-glutamate in brain nerve terminals. Colloids Surf B Biointerfaces. 2017.  149.  Р. 64—71
14. Kao Y.-Y., Cheng T.-J., Yang D.-M,. et al. Demonstration of an olfactory bulb-brain translocation pathway for zno nanoparticles in rodent cells in vitro and in vivo. J. Mol. Neurosci. 2012. 2. P. 464—71.
15. Krisanova N., Kasatkina L, Sivko R, Borysov A, Nazarova A, Slenzka K, Borisova T. Neurotoxic potential of lunar and martian dust: influence on em, proton gradient, active transport, and binding of glutamate in rat brain nerve terminals. Astrobiology. 2013.  13.  P. 679—692.
16. Krisanova N., Sivko R., Kasatkina L., Borуsov A., Borisova T. Excitotoxic potential of exogenous ferritin and apoferritin: Changes in ambient level of glutamate and synaptic vesicle acidification in brain nerve terminals. Cell. Mol. Neuroscience.  2014. 58. P. 95—104.
17. Krisanova N., Trikash I., Borisova T. Synaptopathy under conditions of altered gravity: Changes in synaptic vesicle fusion and glutamate release. Neurochem. Int.  2009.  55. P. 724—731.
18. Lam C.-W., James J. T., McCluskey R., et al. Pulmonary toxicity of simulated lunar and martian dusts in mice: i. histopathology 7 and 90 days after intratracheal instillation. Inhal. Toxicol.  2002.  9. P. 901—916.
19. Linnarsson D., Carpenter J., Fubini B., et al. Toxicity of lunar dust Planet. Space Sci.  2012.  1.  P. 57—71.
20. Oberdörster G., Sharp Z., Atudorei V., et al. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J. Toxicol. Environ. Heal. Part A.  2002.  20.  P. 1531—1543.
21. Pozdnyakova N., Pastukhov A., Dudarenko M., Borysov A., Krisanova N., Nazarova A. Borisova Т. Еnrichment of Inorganic Martian Dust Simulant with Carbon Component can Provoke Neurotoxicity. Microgravity Sci. Tec. 2017.  29. Р. 133—144.
22. Pozdnyakova N., Pastukhov A., Dudarenko M., Galkin M., Borysov A., Borisova T. Neuroactivity of detonation nanodiamonds: dose-dependent changes in transporter-mediated uptake and ambient level of excitatory/inhibitory neurotransmitters in brain nerve terminals.  J. Nanobiotechnol. 2016. 14. P. 25. — DOI: 10.1186/s12951- 016-0176-y.
23. Rehders M., Grossh user B. B., Smarandache A., et al. Effects of lunar and mars dust simulants on hacat keratinocytes and cho-k1 fibroblasts.  Adv. Sp. Res.  2011.  7.  P. 1200—1213.
24. Shatursky O. Y., Kasatkina L. A., Rodik R. V., Cherenok S. O., Shkrabak A. A., Veklich T. O., Borisova T. A., Kosterin S. O., Kalchenko V. I. Anion carrier formation by calix[4]arene-bis-hydroxymethylphosphonic acid in bilayer membranes.  Org. Biomol. Chem. 2014.  12. P. 9811—9821.
25. Soldatkin O., Nazarova A., Krisanova N., Borуsov A., Kucherenko D., Kucherenko I., Pozdnyakova N., Soldatkina A., Borisova T. Monitoring of the velocity of high-affinity glutamate uptake by isolated brain nerve terminals using amperometric glutamate biosensor. Talanta.  2015.  135.  P. 67—74.
26. Wallace W. T., Taylor L. A., Liu Y., et al. Lunar dust and lunar simulant activation and monitoring. Meteorit. Planet. Sci. 2009.7. P. 961—970.