High-Frequency Gravitational Wave research and application to exoplanet studies

Heading: 
1Baker, RML, Jr
1American Association for Advancement of Science, USA
Space Science and Technology 2017, 23 ;(3):47-64
Section: Space Astronomy
Publication Language: English
Abstract: 
A discussion of the history of High-Frequency Gravitational Wave (HFGW) research is first presented. Over the years until modern times, starting with the first mention of Gravitational Waves by Poincaré in 1905 and the definition of HFGWs in 1961 by Robert L. Forward, the discussion continues concerning the international research efforts to detect HFGWs. The article highlights the accomplishments of HFGW researchers in China, Russia, Ukraine, England, Australia, Japan, Germany, Spain, Italy, and the United States. Comparisons are made with Low-Frequency Gravitational Wave (LFGW) research, especially concerning the Laser Interferometer Gravitational Observatory or LIGO. In fine, there are presented several interesting perspectives concerning cosmology, the speed of time and, especially, exoplanet applications of HFGWs.
Keywords: exoplanets, gravitational waves, HFGW Detectors, HFGWs, high-frequency gravitational waves, LIGO, speed of time, Starshot
References: 
1. Poincaré Jules Henri. C.R. Ac. Sci., Paris, 140, 1504 (1905), and also appears in Oeuvres, Volume 9, p. 489, Gauthier-Villars, Paris, (1954).
2. Einstein A. Die Grundlage der allgemeinen Relativitts theorie. Annalen der Physik, 49, 769—822 (1916).
3. Einstein A. Uber Gravitationswellen. In: Sitzungsberichte der Kniglich Preussischen Akadee der Wissenschaften, 154—167 (Berlin, 1918).
4. Balbus S. A. Simplified derivation of the gravitational wave stress tensor from the linearized Einstein field equations (2016)
arXiv.org > astro-ph > arXiv:1604.05974v2, https://arxiv.org/pdf/1604.05974.pdf
5. Einstein A., Rosen N. On Gravitational Waves. J. Franklin Institute, 223, 3—54 (1937).
6. Weinstein G. Einstein and Gravitational Waves 1936—1938. (2016), https://arxiv.org/ftp/arxiv/papers/1602/1602.04674.pdf.
7. Weber J. Detection and generation of gravitational waves. Phys. Revw, 117 (N 1), 306—313 (1960).
8. Forward R. L., Bakerv R. M. L., Jr. “Gravitational Gradients, Gravitational Waves and the ‘Weber Bar’,”
Lecture given at the Lockheed Astrodynamics Research Center, 650 N. Sepulveda Bel Air, California, USA, November 16th, 1961 Lockheed Research Report RL 15210, based upon notes taken by Samuel Herrick a Lockheed Consultant (Forward coined the term “High-Frequency Gravitational Waves” and Baker suggested their use to monitor extraterrestrial intelligence communications) The lecture was based upon work with the Weber bar and gravity gradients: Joseph Weber (1960), “Detection and generation of gravitational waves,” Physics Review, Volume 117, Number 1, pp.306—313. and W. B. Klemperer and Robert M. L. Baker, Jr., (1957). “Satellite Librations,” Astronautica Acta 3, pp.16—27.
9. Gertsenshtein M. Wave resonance of light and gravitational waves. Sov. Phys. JETP, 14 (N 1), 84—85 (1962).
10. Gertsenshtein M. E., Pustovoit V. I. On the detection of low frequency gravitational waves. Sov.t Phys. JTEP, 16, 433—435 (1963).
11. Abramovici A., Althouse W. E., Drever R. W. P., et al. LIGO: The Laser Interferometer Gravitational-Wave Observatory, Science, 256, 325—333 (1992).
12. Halpern L. E., Laurent B. On the gravitational radiation of microscopic systems. Il Nuovo Cimento, 33 (N 3), 728—751 (1964).
13. Grishchuk L. P., Sazhin M. V. Emission of gravitational waves by an electromagnetic cavity. Sov. Phy. JETP, 38 (N 2), 215—221 (1974).
14. Chapline G. F., Nuckolls J., Woods L. L. Phys. Revw D, 10 (N 4), 1064—1065 (1974).
15. Braginsky V. B., Rudenko V. N. Gravitational waves and the detection of gravitational radiation, [Section 7: “Generation of gravitational waves in the laboratory,” Physics Report (Review section of Physics Letters), Volume 46, N 5, P. 165—200 (1978).
16. Dehnen H., Romero-Borja F. Generation of GHz – THz High-Frequency Gravitational Waves in the laboratory,” paper HFGW-03-102, Gravitational-Wave Conference, The MITRE Corporation, May 6—9, P. 22 (2003),
17. Romero-Borja F., Dehnen H. Generation of gravitational radiation in the laboratory. Z. Naturforsch, 36a, 948—955 (1981),
18. Cruise A. M. An Interaction between gravitational and electromagnetic waves. Mon. Notic. Roy. Astron. Soc., 204, 485—482 (1983).
19. Cruise A. M. An electromagnetic detector for very high-frequency gravitational waves. Class. Quantum Grav., 17, 2525—2530 (2000),
20. Ingley R. M. J., Cruise A. M. An electromagnetic detector for high frequency gravitational waves, 4th Edoardo Amaldi Conference (2001).
21. Cruise A. M., Ingley R. M. J. A correlation detector for very high frequency gravitational waves, Class. Quantum Grav., 22, 5479—5481 (2005).
22. Cruise M. Operational Performance of the Birmingham 100 MHz Detector and Upper Limits on the Stochastic Background, Amaldi 7 Gravitational Wave Conference, July 9, 2007, Sydney, Australia (2007).
23. Cruise M. Very High Frequency Gravitational Waves, Gravitational Wave Advanced Detector Workshop (GWADW), Elba Conference, 17 May, (2008), https://indico.pi.infn.it/contributionDisplay.py?contribId=132&sessionId...
24. Tobar M. E., Blair D. G. Parametric transducers for resonant bar gravitational wave antenna. J. Phys. D: Appl. Phys., 26, 2276—2291 (1993).
25. Blair D. G., et al. High Sensitivity Gravitational-Wave Antenna with Parametric Transducer Readout. Phys. Rev.
Lett., 74 (N 1), (1995).
26. Hulse R. A., Taylor J. H. Discovery of a pulsar in a binary system. Astrophys. J., 195, L51 (1975).
27. Esposito L. W., Harrison E. R. Properties of the Hulse-Taylor binary pulsar system. Astrophys. J., 196, L1—L2 (1975).
28. Taylor J. H., Weisberg J. M. A new test of general relativity – gravitational radiation and the binary pulsar PSR 1913-16. Astrophys. J., 253, 908—920 (1982).
29. Fontana G. A possibility of emission of high frequency gravitational radiation from junctions between d-wave and s-wave superconductors, Preprint, Faculty of Science, University of Trento, 38050 Povo (TN), Italy, pp. 1—8 (1998), “. http://xxx.lanl.gov/html/cond-mat/9812070
See also Fontana G. High Temperature Superconductors as Quantum Sources of Gravitational Waves: the HTSC GASER. In: Modanese G, Robertson G. A., Eds. Gravity-Superconductors Interaction: Theory and Experiment. Bentham 2012; Ch. 3. G. Fontana, Directions for gravitational wave propulsion. J. Space Expl., 1 (2012) FP8-FP16.
30. R. Clive Woods, Robert M. L. Baker, Jr., Fangyu Li, Gary V. Stephenson, Eric W. Davis and Andrew W. Beckwith, “A new theoretical technique for the measurement of high-frequency relic gravitational waves.” J. Mod. Phys., 2 (N 6), 498—518 (2011). The Abstract is available at:  http://vixra.org/abs/1010.0062 and the manuscript is available at: http://www.gravwave.com/docs/J.%20of%20Mod.%20Phys%202011.pdf. http://dx.doi.org/10.4236/jmp.2011.26060.
31. Nishizawa Atsushi, Kawamura Seiji, Akutsu Tomotada, Arai Koji, Yamamoto Kazuhiro, Tatsumi Daisuke, Nishida Erina, Sakagami Masa-aki, Chiba Takeshi, Takahashi Ryuichi, and Sugiyama Naoshi. Laser-interferometric detectors for gravitational wave backgrounds at 100 MHz: Detector design and sensitivity. Phys. Rev. D , 77 (N 2), 022002 (2008)
http://dx.doi.org/PhysRevD.77.022002.
32. Shawhan P. S. Gravitational Waves and the Effort to Detect them.” Amer. Sci., 92 (4), 350—356 (2004).
33. Davis Eric W. Laboratory generation of high-frequency gravitons via quantization of the coupled Maxwell-Einstein fields,” paper HFGW-03-125, Gravitational-Wave Conference, The MITRE Corporation, May 6—9. (2003).
34. Millis Marc G. and Davis Eric W. Frontiers of Propulsion Science, Progress in Astronautics and Aeronautics Series, 227, Published by AIAA, 739 pages, ISBN-10: 1-56347-956-7 and ISBN-13: 978-1-56347-956-4 (2009).
35. Stephenson Gary V. The application of High-Frequency Gravitational Waves (HFGW) to communications,” paper HFGW-03-104, Gravitational-Wave Conference, The MITRE Corporation, May 6—9 (2003).
36. Stephenson Gary V. Lessons for Energy Resonance HFGW Detector Designs Learned from Mass Resonance and Interferometric LFGW Detection Schemes,” after Peer Review, accepted for Publication in the Proceedings of the Space, Propulsion and Energy (2009)
37. Stephenson Gary V. The Standard Quantum Limit for the Li-Baker HFGW Detector,” after Peer Review, accepted for Publication in the Proceedings of the Space, Propulsion and Energy Sciences International Forum (SPESIF), 24—27 February, Edited by Glen Robertson. (Paper 023), American Institute of Physics Conference Proceedings, Melville, NY 1103, 542—547. Edited by Glen Robertson. (Paper 016), American Institute of Physics Conference Proceedings, Melville, NY 1103, pp. 532—541 (2009). http://www.gravwave.com/docs/Detector%20Development.pdf
38. Garcia-Cuadrado G. Towards a New Era in Gravitational Wave Detection: High Frequency Gravitational Wave Research,” after peer review, accepted for publication in the Proceedings of the Space, Propulsion and Energy Sciences International Forum (SPESIF), 24—27 February, Edited by Glen Robertson. (Paper 038), American Institute of Physics Conference Proceedings, Melville, NY 1103, 553—563 (2009). Please visit Internet site  http://www.gravwave.com/docs/Toward%20a%20New%20Era%20in%20Gravitational...
39. Corda Ch., Fontana G., Garcia-Cuadrado G. Gravitational Waves in the Hyperspace: a Critical Review," After Peer Review, Accepted for Publication in the Proceedings of the Space, Propulsion and Energy Sciences International Forum (SPESIF2009), 24—27 February, Edited by Glen Robertson. (Paper 027), American Institute of Physics Conference Proceedings, Melville, NY 1103 (2009).
40. Woods R. C. Comments on ‘A gravitational shielding based upon ZnS:Ag phosphor’ and ‘The gravitational mass at the
superconducting state,” Los Alamos National Laboratory Archive physics/0204031 (2002).
41. Woods R. C. Manipulation of gravitational waves for communications applications using superconductors. Phys. C, 433, 101—107 (2005).
42. Woods C., Baker R. M. L., Jr. Gravitational Wave Generation and Detection Using Acoustic Resonators and Coupled Resonance Chambers,” in the proceedings of Space Technology and Applications International Forum (STAIF-2005), edited by M.S. El-Genk, American Institute of Physics Conference Proceedings, Melville, NY 746, 1298 (2005).
43. Woods R. C. Modified Design of Novel Variable-Focus Lens for VHFGW,” Discussion-Focus Paper 3.1, 2nd HFGW International Workshop, Institute for Advanced Studies at Austin (IASA),Texas, September 19—21(2007);
44. Woods R. C., Baker, R. M. L., Jr., Li F., Stephenson G. V., Davis E. W., Beckwith A. W. A new theoretical technique for the measurement of high-frequency relic gravitational waves. J. Mod. Phys., 2 (N 6), 498—518 (2011). The Abstract is available at: http://vixra.org/abs/1010.0062 and the manuscript is available at:
45. Woods R. C., Baker R. M. L. Jr. Generalized Generators of Very-High-Frequency Gravitational Waves Including Ring/Cylinder Devices,” After Peer Review, Accepted for Publication in the Proceedings of the Space, Propulsion and Energy Sciences International Forum (SPESIF), 24—27 February, Edited by Glen Robertson. (Paper 001), American Institute of Physics Conference Proceedings, Melville, NY 1103, 515—523 (2009).
46. Baker R. M. L., Jr., Black C. S. Radiation Pattern for a Multiple-Element HFGW Generator, After Peer Review, Accepted for Publication in the Proceedings of the Space, Propulsion and Energy Sciences International Forum (SPESIF), 24—27 February, Edited by Glen Robertson. 3rd High-Frequency Gravitational Wave Workshop (Paper 035), American Institute of Physics Conference Proceedings, Melville, NY 1103, 582—590 (2009).
47. Giovannini M. Phys. Rev. D, 60, 123, 511 (1999).
48. Giovannini M. Class. Quantum Grav., 16, 2905 (1999).
49. Riazuelo A., Uzan J. P. Phys. Rev. D, 62, 083, 506 (2000).
50. Lidsey J. E. et al. Phys. Rep., 337, 343 (2000).
51. Copeland E. J. et al. gr-qc/9803070.
52. Gasperini M., Veneziano G. Phys. Rep., 373, 1 (2003).
53. Veneziano G. Sci. Am., 290, 30 (2004).
54. Grishchuk L. P. gr-gc/0002035.
55. Grishchuk L. P. gr-gc/0305051.
56. Grishchuk L. P. gr-gc/0504018.
57. Gorkavyi N. N. Paper HFGW-03-115, In: High-Frequency Gravitational Waves Conference, ed. by P. Murad, R. M. L. Baker Jr. (MITRE Corporation, Mclean, VA, USA (2003).
58. Bisnovatyi-Kogan G. S., Rudenko V. N. Very high frequency gravitational wave background in the universe. Class. Quantum Grav., 21, 3344—3359 (2004).
59. Zhang Y., Yuan Y., Zhao W., Chen Y. T. Class. Quantum Grav., 1383 (2005).
60. Randall L., Sundrum R. Large Mass Hierarchy from a Small Extra Dimension. Phys. Rev. Lett., 83, 17, 3370—3373 (1999).
61. Randall L., Sundrum R. An Alternative to Compactification. Phys. Rev. Lett., 83, 4690—4693 (1999).
62. Sokol J. Observations hint at a new recipe for giant black holes. Science, 355, 120 (2017).
63. Margalit Y. et al. Science, 349, 1205—1208 (2017). 64. Li Fang-Yu., Tang Meng-Xi. Positive Definite Problem of Energy Density and Radiative Energy Flux for Pulse Cylindrical Gravitational wave. Acta Phys. Sinca, 6 (N 5), 321—333 (1997).
65. Li Fang-Yu., Tang Meng-Xi, Luo Jun, Li Yi-Chuan. Electrodynamical response of a high energy photon flux to a
gravitational wave. Phys. Revw D, 62, 044018-1 to 044018 -9 (2000).
66. Li Fang-Yu., Tang Meng-Xi, Shi Dong-Ping. Electromagnetic response for High-Frequency Gravitational Waves in the GHz to THz band, paper HFGW-03-108, Gravitational Wave Conference, The MITRE Corporation, May 6—9 (2003).
67. Li Fang-Yu., Yang Nan. Resonant interaction between a weak gravitational wave and a microwave beam in the double polarized states through a static magnetic field. China Phys. Lett., 21 (N 11), 2113 (2004).
68. Philip Ball. A World Without Cause and Effect. Nature, 546, 590—592 (2017).
69. Beckwith Andrew W. J. High Energy Phys., Gravitation and Cosmology, 3 (N 4), (2017).
70. Beckwith Andrew W. HFGW and the search for relic gravitons / entropy increase from the early universe, Proceedings of the Space, Propulsion and Energy Sciences International Forum (SPESIF 2010), February 23—26, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, U.S.A., Edited by Glen Robertson, American Institute of Physics Conference Proceedings, Melville. NY, USA, 1208 (2010).
71. Beckwith Andrew W. Relic High Frequency Gravitational Waves, Neutrino Physics, and Icecube,” After Peer Review, Accepted for Publication in the Proceedings of the Space, Propulsion and Energy Sciences International Forum (SPESIF), 24—27 February, Edited by Glen Robertson. (Paper 003), American Institute of Physics Conference Proceedings, Melville, NY 1103, P. 564—570 (2009).
72. Beckwith A.W. Several routes for determining entropy generation in the early universe, links to CMBR spectra, and relic neutrino production,” Presented at 6th International Conference on Gravitation and Cosmology (ICGC-2007), aneshkhind, Pune, India, 17—21 Dec 2007 and 43rd Rencontres de Moriond: Cosmology, La Thuile, Italy, 15-22 Mar 2008 and 23rd International Conference on Neutrino Physics and Astrophysics (Neutrino 2008), Christchurch, New Zealand, 26—31 May 2008. e-Print: arXiv:0712.0029 (2007).
73. Beckwith Andrew W. Implications for the Cosmological Landscape: Can Thermal Inputs from a Prior Universe Account for Relic Graviton Production? In the proceedings of Space Technology and Applications International Forum (STAIF-2008), edited by M.S. El-Genk, American Institute of Physics Conference Proceedings, Melville, NY 969, P.1091 (2008).
74. Corda Christian. Primordial Gravity’s Breath. Electronic J. Theor. Phys., 9, 26, 1—10 (2012). http://arxiv.org/abs/1110.1772
75. Corda Christian. Information on the inflation field from the spectrum of relic gravitational waves. General Relativity and Gravitation, 42, 5, 1323—1333 (2010).
76. Corda Christian. Tuning the Stochastic Background of Gravitational Waves Using the WMAP Data. Mod. Phys.Lett. A, 22 (N 16), 1167—1173 (2007).
77. Corda Christian. Fontana Giorgio and Garcia Cuadrado Gloria Gravitational Waves in Hyperspace. Mod. Phys. Ltrs. B, 24 (N 8), 575—582 (2009).
78. Corda Christian. Tuning the Stochastic Background of Gravitational Waves Using the WMAP Data, Mod .Phys.Lett. A, 22 (N 16), 1167—1173 (2007).
79. Abbott B. P. et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Revw Lett., 116, 061102-1 to -16. February 11 (2016).
80. Singh S. et al. Detecting continuous gravitational waves with superfluid He-4. New J. Phys., 19, 073023 (2017).
81. Adrian Woolfson. Inevitable or improbable? Nature, 357 (N 6349), 362 (2017).
82. Yatskiv Ya. S., Alexandrov A. N., Vavilova I. B., Zhdanov V. I., Kudrya Yu. N., Parnovsky S. L., Fedorova O. V., Khmil S. V. General Relativity theory: tests through time, 288 p. (Akademperiodyka, Kyiv, 2005).
83. Hawking W., Israel W. General Relativity – An Einstein centenary survey. (Cambridge University Press, 1979).
84. Baker R. M. L., Jr. Gravitational Waves: the World of Tomorrow, a Primer, with Exercises, 3rd Printing , Infinity Press, 2016.
85. Webber D. M. et al. Measurement of the Positive Muon Lifetime (decay) and Determination of the Fermi Constant to Part-per-Million Precision. Phys. Rev. Lett., 106:041803 (2011); Phys. Rev. Lett., 106:079901 (2011), the MuLan Collaboration (2011).
86. Adams M. Cosmic Ray Meeting, February (2017) (https/indico.cern.ch/event/5960021/contributions/2463437) (2017).
87. Yatskiv, Ya.S., Vavilova, I.B., Romanets, O.A., Savchuk, V.S. Some little-known facts and events from the history of gravitational wave research in Ukraine.  Kosm. nauka tehnol. 2017, 23(3):65-74.