Attitude determination of a spacecraft using a vertical sensor

1Tkachenko, AI
1International Research and Training Center for Information Technologies and Systems of the National Academy of Sciences of Ukraine and Ministry of Education and Science of Ukraine, Ukraine
Space Sci.&Technol. 2016, 22 ;(2):22-28
https://doi.org/10.15407/knit2016.02.022
Section: Spacecrafts and Payloads
Publication Language: Russian
Abstract: 
We show a possibility of a spacecraft attitude determination using the only source of information — a local vertical reference frame — in a condition of the vehicle’s angular stabilization by means of considerable control torques.
Keywords: angular stabilization, attitude determination, orbital gyrocompass, spacecraft, vertical sensor
References: 
1. Besekerskij V. A., Ivanov V. A., Samotokin B. B. The orbital gyrocompassing, 256 p. (Politehnika, St. Petersburg, 1993) [in Russian].
2. Brammer K., Siffling G. Kalman-Bucy Filters. 200 p. (Nauka, Moscow, 1982) [in Russian].
3. Branec V. N., Shmyglevskij I. P. The use of quaternions in problems of solid-state orientation, 320 p. (Nauka, Moscow, 1973) [in Russian].
4. Grishin V. A. Development of High Precision Earth Sensors and Navigation Systems based on Horizon Line Observation. Current problems in remote sensing of the Earth from space, 9 (3), 108—114 (2012) [in Russian].
5. Lebedev D. V., Tkachenko A. I. Management of a spherical spacecraft motion in the magnetic field of the Earth. Part II. Orientation and stabilization. Problems of Control and Informatics, N 3, 5—18 (1996) [in Russian].
6. Lebedev D. V., Tkachenko A. I. Navigation and control of the orientation of small satellites, 298 p. (Nauk. dumka, Kiev, 2006) [in Russian].
7. Lipton A. Exhibition of the inertial systems on a movable base, 167 p. (Nauka, Moscow, 1971) [in Russian].
8. Lee E. B., Markus L. Foundations of Optimal Control Theory, Transl. from Eng., 574 p. (Nauka, Moscow, 1972) [in Russian].
9. Parusnikov N. A., Morozov V. M., Borzov V. I. Correction task in the inertial navigation, 174 p. (MSU, Moscow, 1982) [in Russian].
10. Tkachenko A. I. GPS-correction in the problem of loworbit spacecraft navigation. J. Computer and Systems Sciences International, No. 3, 122—133 (2009) [in Russian].
11. Tkachenko A. I. Magnetic stabilization of a spacecraft and the effect of compensation of information errors. Cosmic Research, 50 (1), 79—88 (2012) [in Russian].
https://doi.org/10.1134/S0010952512010108
12. Tkachenko A. I. Compact algorithm for estimating spacecraft motion parameters from magnetometer readings. J. Computer and Systems Sciences International, No. 2, 105— 117 (2013) [in Russian].
https://doi.org/10.1134/s1064230713010103
13. Filippov Yu. I. Effective algorithm of transformation of a quaternion of FV-orientation in system of angles of EulerKrylov. Polet, No. 6, 32—35 (2009) [in Russian].
14. Potapenko Ye. M. Simplified linear-system restorability and controllability criteria and their application in robotics. J. Automation and Inform. Sci., 27 (5-6), 146—151 (1996).
https://doi.org/10.1615/JAutomatInfScien.v28.i5-6.170