Gravimorphogenesisgametophytes of mosses

1Lobachevska, OV, 2Khorkavtsiv, Ya.D, 2Kyyak, NYa., 3Kit, NA, 3Danylkiv, IS
1Institute of Ecology of the Carpathians of National Academy of Sciences of Ukraine, L’viv, Ukraine
2Institute of Ecology of the Carpathians of the National Academy of Sciences of Ukraine, L’viv, Ukraine
3Institute of Ecology of the Carpathians of National Academy of Sciences of Ukraine, L'viv, Ukraine
Kosm. nauka tehnol. 2015, 21 ;(4):94–102
https://doi.org/10.15407/knit2015.04.094
Publication Language: Ukrainian
Abstract: 

The orientation of lateral branch growth is determined by the angle of inclination relative to the Earth’s gravity vector. It was determined that modulation of IAA signal system and auxin redistribution reduces endogenous counteraction to gravitropism, increasing plagiotropic growth at the same time. Nucleus movement in protonemata cells correlates with the initiation of a new growth zone depending on gravity vector. Obviously, in the cells competent to branching protonemata the signal induces faster movement of the nucleus and coordinates mitotic division and growth of cell wall. Gravimorphogenesis of apical cells depends on the spectral composition of light and hormonal balance. Modification of light effect by kinetin confirms the interaction of photo- and hormonal graviregulation systems. It was established that pHi value has an effect on the gravisensitivity of apical cells. Protonema of mosses adapts to gravitation and other ecological factors by changing its morphological structure — increasing the branching activity and the number of buds and vegetative organs of reproduction and accelerating their development. 

Keywords: gravimorphogenesis, light., phytohormones
References: 

1. Golovackaja I. F. The regulatory role of the green light in the morphogenesis and hormonal balance Arabidopsis thaliana (L.) Heynh. Vestn. Tomskogo gos. un-ta. No.8, 43—57 (2010) [in Russian].

2. Demkiv O. T., Horkavciv Ja. D., Kardash A. R. The polarity and cell differentiation during development arhegonialnyh plants. Analiticheskie aspekty differencirovki, 121—132 (Nauka, Moscow, 1991) [in Russian].

3. Demkiv O. T., Horkavciv Ja. D., Pundjak O. I. Gravitacija jak formotvorchyj faktor rozvytku mohiv.  Fiziologija roslyn: problemy ta perspektyvy rozvytku, V. 2,  P. 403—408 (Vol. 1-2; Vol. 2) (Logos, Kyiv, 2009) [in Ukrainian].

4. Kyyak N.Ya. An effect of lead ions on the growth and oxidative stress of Funaria hygrometrica Hedw.gametophyte on the different stages of development. Chornomorski Botanical Journal, 8(2), 171-177 (2012) [in Ukrainian].

5. Kordyum E. L., Sytnik K. M., Baranenko V. V. et al. Cellular mechanisms of plant adaptation to the adverse effects of environmental factors in vivo . 277 p. (Nauk. dumka, Kiev, 2003) [in Russian].

6. Lazarenko A. S. Selected papers; Eds.: M. A. Golubec', I. S. Danylkiv, O. T. Demkiv ta in.  229 p. (Lviv, 2001) [in Ukrainian].

7. Lobachevska O., Rabyk I. Peculiarities of bryophytes vegetative reproduction on the d umps of sulphur production.  Visnyk of the Lviv University. Series Biology, Issue 60, 145 –155 (2012) [in Ukrainian].

8. KhorkavtsivY.D., Demkiv O.T. The effects of auxin transport inhibitors on gravitropism in photonemata of the moss Pohlia nutans (Hedw.)  kosm. nauka tehnol., 9 (2-3), 77—82 (2003) [in Ukrainian].

9. Horkavciv Ja. D., Kyjak N. Ja., Kit N. Ja. Gravidependent morphogenesis moss. 14th Ukrainian Conference on Space Research: Abstracts,  P.71 (Uzhgorod, Kyiv, 2014) [in Ukrainian].

10. Cove D., Bezanilla M., Harries Ph., Quatrano R. Mosses as model systems for the study of metabolism and development. Ann. Rev. Plant Biol.  57, 497—520 (2006).
https://doi.org/10.1146/annurev.arplant.57.032905.105338

11. Demkiv O. T., Khorkavtsiv Ya. D., Pundiak O. I. Changes of protonemal cell growth related to cytoskeleton organization.  Cell Biol. Int.  27, 187—189 (2003).

12. Fasano J. M., Swanson S. J., Blancaflor E. B., et al. Changes in root cap pH required for the gravity response of the Arabidopsis root.  Plant Cell. 13, 907—921 (2001).
https://doi.org/10.1105/tpc.13.4.907

13. Felle H. Short-term pH regulation in plants. Plant Physiol. 74, 583—591 (1988).

14. Hangarter R. P. Gravity, light and plant form.  Plant, Cell and Environment. 20, 796—800 (1997).
https://doi.org/10.1046/j.1365-3040.1997.d01-124.x

15. Johannes E., Collings D. A., Rink J. C., Allen N. S. Cytoplasmic pH dynamics in Maize pulvinal cells induced by gravity vector changes.  Plant Physiol. 127, 119—130 (2001).
https://doi.org/10.1104/pp.127.1.119

16. Kiss J. Z., Correll M. J., Mullen J. L., et al. Root phototropism: how light and gravity interact in shaping plant form.  Grav. and Space Biol.  16, 55—60 (2003).

17. Kordyum E. L. Plant cell gravisensitivity and adaptation to microgravity.  Plant Biology.   16 (1), 79—90 (2014).

18. Medina F.-J., Herranz R. Microgravity environment uncouples cell growth and cell proloferation.  Plant Signaling & Behavior.  5(2), 176—179 (2010).

19. Matía I., González-Camacho F., Herranz R. et al. Plant cell proliferation and growth are altered by microgravity conditions in spaceflight.  J. Plant Physiol.  167, 184— 193 (2010).
https://doi.org/10.1016/j.jplph.2009.08.012

20. Prasad T. K., Anderson M. D., Stewart C. R. Localization and characterization of zeroxidases in the mitochondria of chilling-acclimated maize seedlings.  Plant Physiol.  108, 1597—1605 (1995).

21. Roychoudhry S., Bianco M. D., Kieffer M., et al. Auxin control gravitropic setpont angle in higher plant lateral branches.  Current Biology.  23, 1497— 1504 (2013).
https://doi.org/10.1016/j.cub.2013.06.034  

22. Takanashi N., Yamazaki Y., Kobayashi A., et al. Hydrotropism interacts with gravitropism by degrading Amyloplasts in Seedling Roots of Arabidopsis and Radish.  Plant Physiol.  132 (2), 805—810 (2003).

23. Schwuchow J. M., Kern V. D., White N. J., Sack F. Concervation of the plastid sedementation zone in all moss genera with known gravitropic protonemata.  J. Plant Growth Regul.  21, 146—155 (2002).
https://doi.org/10.1007/s003440010048  

24. Vreeland V., Kwan N. Marine Algal Vanadium Peroxidase: Substratum Adhesion and Active recombinant Catalytic Domain.  Thesisis of Conf. “Peroxidase 99” (July 17— 21, 1999, Columbus, Ohio USA). P. 234—235 (Columbus, 1999).