Fiber-optic sensors with a pulse-modulated optical flow

1Demianenko, PO, 1Zinkovski, Yu.F
1National Technical University of Ukraine «Kyiv Polytechnic Institute», Kyiv, Ukraine
Kosm. nauka tehnol. 2015, 21 ;(4):03-18
https://doi.org/10.15407/knit2015.04.003
Section: Space Instruments
Publication Language: Russian
Abstract: 

We investigate the problem of metrologicaly low capabilities of the analog gauges on the basis of fiber-optic sensors (FOS) as well as analyze the reasons and justify the transition to the pulse (discrete) principles of modulation parameters of the optical flow in FOS. For this purpose, the additional, non-optical parameters, which shifted the role of recipient of information, and from which this information may be reproduced with the required accuracy, could be added to the optical flow. The schematic of a FOS design is developed. Metrological calculation of linear acceleration meter based on IFOS is performed and discussed.

Keywords: fiber optic accelerometers., fiber-optic acceleration sensors, pulse modulation
References: 

1. Garmash V.B., Egorov F.A., Kolomiec L.N. et al. Opportunities, Challenges and Prospects of fiber optic measurement systems in modern instrument.  Foton-Jekspress. 46 (6), 128— 140 (2005) [in Russian].
2. Guljaev Ju.V., Nikitov S.A., Potapov V.T., Chamorovskij Ju.K. Fiber optic technology, devices, sensors and systems.  Foton-Jekspress. 46 (6), 114— 127 (2005) [in Russian].
3. Dem'yanenko P.A. Predel'nye vozmozhnosti analogovykh opticheskikh datchikov v sostave VOS [Extreme performance of analog optical sensors as a part of a fiber optical system].  Radiotehnika, No. 2, 88— 90 (1988) [in Russian].
4. Dem'janenko P.A. Improved measuring accuracy in optical fiber measurement systems with optical sensors [Povyshenie tochnosti izmerenij v volokonno-opticheskih sistemah izmerenija s opticheskimi datchikami].  Radiotehnika. No. 2, 83— 85 (1991) [in Russian].
5. Dem'janenko P.A. Accuracy means of fiber-optic sensors (Problems and Solutions) [Tochnost' izmerenij posredstvom volokonno-opticheskih datchikov (problemi i puti ih reshenija].  Optoelectronics and semiconductor technics, Issue 29, 88 —93 (1995) [in Russian].
6. Dem'janenko P.A., Zin'kovskij Ju.F., Prokof'ev M.I. Precision digital accelerometer with a fiber-optic sensor [Precizionnyj cifrovoj akselerometr s volokonno-opticheskim datchikom].  Radioelectronics and Communications Systems, 40(1), 39— 47 (1997) [in Russian].
7. Dem'janenko P.A., Zin'kovskij Ju.F., Prokof'ev M.I. Signal processing in the meters with pulsed fiber optic sensors [Obrabotka signalov v izmeriteljah s impul'snymi volokonno-opticheskimi datchikami].  Radioelectronics and Communications Systems, 41(8), 54— 60 (1998) [in Russian].
8. Dem’janenko P.O., Zin'kovs'kyj Ju.F., Prokof’jev M.I. Digital precision fiber optic gravimeter [Cyfrovyj precyzijnyj volokonno-optychnyj gravimeter].  Geodesy, Cartography, and Aerial Photography,  Issue 58, 239— 241 (1997) (Kadastr, fotogrammetrija, geoinformatyka — suchasni tehnologii' i perspektyvy rozvytku: Mater. I Mizhnarod. naukovo-tehnichnoi' konf., 9— 14 chervnja 1997 r., L'viv, Derzhavnyj universytet «L'vivs'ka politehnika») [in Ukrainian].
9. Dem’janenko P.O., Zin'kovs'kyj Ju.F., Prokof’jev M.I. Fiber optic sensor accelerometer for space navigation systems [Volokonno-optychnyj davach dlja akselerometriv kosmichnyh navigacijnyh system]. Suchasni tehnologii' v aerokosmichnomu kompleksi: Mater. IV Mizhnarod. naukovo-tehnichnoi' konf., 165— 168 (Zhytomyrs'kyj inzhenerno-tehnologichnyj instytut, Zhytomyr, 1999) [in Ukrainian].
10. Demjanenko G.A., Zinkovskiy J.F. Methodological  aspects  of  treatment  of  a phenomenon diffraction of light.  Bulletin of National technical university of Ukraine "Kyiv polytechnic institute". Ser. Radiotechnique. Radioapparatus building, No.36, 132— 140 (2008) [in Ukrainian].
11. Zhizhin V. Fiber-Optic Sensors: Industrial Applications Prospects. Electronic Components, No.12, 17— 23 (2010) [in Russian].
12. Zin'kovs'kij Ju.F. Dem'janenko P.O., Prokof'ev M.I. Transmitters based on fiber optic sensors [Izmeritel'nye preobrazovateli na osnove volokonno-opticheskih datchikov].  Foton-Jekspress. 46 (6), 181— 187 (2005) [in Russian].
13. Moiseev V.V., Potapov V.T. Stability Study optical fiber sensor "reflective" type [Issledovanie stabil'nosti volokonno-opticheskogo datchika «otrazhatel'nogo» tipa].  Radiotehnika, No. 8, 37— 40 (1988) [in Russian].
14. Okosi T., Okamoto K., Ocu M. et al. Fiber Optic Sensors  [Volokonno-opticheskie datchiki];  Okosi T. (Ed.), Transl. from Japan. 256 p. (Jenergoatomizdat, Leningrad, 1990) [in Russian].
15. Dem'janenko P.A., Prokof'ev M.I. A fiber optic accelerometer [Volokonno-opticheskij datchik uskorenija].  Pat. 2146373 Rossijskoj federacii MKL G 01 P 15/08. Prioritet ot 02.08.95,  published 10.03.2000 [in Russian].
16. Timoshenko S.P., Gud'er Dzh. Theory of elasticity [Teorija uprugosti]. Transl. from Eng.; Shapiro G.S. (Ed.), 575 p. (Nauka, Moscow, 1975) [in Russian].
17. Farah T., Guerlin C., Landragin A., et al. Underground operation at best sensitivity of the mobile LNE-SYRTE cold atom gravimeter.  Gyroscopy and Navigation, 86(3), 3— 14 (2014) [in Russian].
18. Demianenko P.O., Zinkovskiy Yu.F., Prokof’ev M.I. Digital precision sensor of superlow accelerations.  Space science and technology, 6 (4), 27— 28 (2000) [in Russian].
https://doi.org/10.15407/knit2000.04.027
19. Hasegawa A., Kodama Y. Guiding-center soliton in fibers. Opt. Lett. 15 (24), 1443— 1445 (1990).
20. Soref R., McMahon D.H. Tilting-mirror fiber optic accelerometer.  Appl. Opt.  23, 486— 491 (1984).
21. Spillman W.D. Multimode fiber optic accelerometer based on the photoelastic effect.  Appl. Opt. 21, 2653— 2658 (1982).
22. Van As H.R. Im Gigabit-Rausch.  Bus. Comput. N 6, 81 —83 (1996).
23. Webb S.M., Guild K.M., Sian S.S. 337 km unrepeatered transmission at 10 Gbit/s with Raman amplification and clock prechirp.  Electron. Lett. 32(9), 827 —829 (1996).