Optical systems of fourier transform imaging spectrometer for remote sensing

1Kolobrodov, VG, 2Lykholit, NI, 2Pozdniakov, DV, 2Tiagur, VM
1National Technical University of Ukraine “Kyiv Polytechnic Institute”, Kyiv, Ukraine
2Special Device Production State Enterprise “Arsenal”, Kyiv, Ukraine
Kosm. nauka tehnol. 2014, 20 ;(5):35–40
https://doi.org/10.15407/knit2014.05.035
Section: Space Instruments
Publication Language: Ukrainian
Abstract: 

We analyzed some variants of Fourier transform imaging spectrometer (FTIS) for remote sensing. Much attention is given to the analysis of possible optical schemes which can be applied in the FTIS design. The considered schemes can be used in devices of space and aviation basing

Keywords: Fourier transform imaging spectrometer, remote sensing
References: 

1. Artyukhina N.K., Klimovich T.V., Kotov M.N. Mathematical modeling of fourier transform imaging spectrometer.  Bulletin of National Technical University of Ukraine "Kyiv Polytechnic Institute". Series Instrument Making. Issue 43, 35—46 (2012) [in Russian].
2. Gorbunov G. G. Fourier spectrovisor. Hyperspectral instruments and technology Tez. dokl. nauchno-tehnicheskoj konf., 73— 74 (Krasnogorsk, 2013) [in Russian].
3. Grib D.A., Khudov G.V., Makoveychuk A.N., Karlov D.V., Zhuykov D.B. Use of satellite information in behalf of estimation of fire situation at battle application of aircrafts of military powers of Ukraine. Systems of arms and military equipment. No. 3 (23), 176—179 (2010) [in Ukrainian].
4. Zholobak G. M. Domestic experience of satellite monitoring over forest stands in Ukraine.  Kosm. nauka tehnol., 16 (3), 46—54 (2010) [in Ukrainian].
https://doi.org/10.15407/knit2010.03.046
5. Grjaznov G.M., Egorova L.V., Starichenkova V.D., Taganov O.K., Feofanov S.V. Interference Spectrometer.  Pat. 2313070 Russia, MPK G01J3/ 45,G01B9/02, published 20.12.2007, Bull. 35, Retrieved from  http://www.freepatent.ru/patents/2313070  [in Russian].
6. Pashkov D.P.  Analysis of development optic-electronic systems of Earth remote sensing. Systems of control, navigation and communication, Issue 4(8), 15—18 (2008) [in Russian].
7. Crites S. T., Lucey P. G., Wright R., et al. A low cost thermal infrared hyperspectral imager for small satellites.  Proc. SPIE.  8044, Sensors and Systems for Space Applications (2011).
 8. Ferrec Y. Spectro-imagerie aéroportée par transformation de Fourier avec un interféromètre statique àdécalage latéral :réalisation et mise en oeuvre: these pour obtenir le grade de Docteur en Sciences. — UniversitéParis-Sud XI, 2008. —
Mode d’accès: http://pastel.archives-ouvertes.fr/docs/00/35/71/22/PDF/these_Ferrec.pdf [in French]. 
9. Harvey A. R., Fletcher-Holmes D. W. Birefringent Fourier-transform imaging spectrometer.  Opt. Express.  12(22) (2004).  Mode of access: http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-12-22-5368.
10. Lucey P. G. SMIFTS: A cryogenically-cooled spatiallymodulated imaging infrared interferometer spectrometer.  Proc. SPIE. 1937, Imaging Spectrometry of the Terrestrial Environment (1993).
11. Otten III L. J., Butler E. W., Rafert B., Sellar R. G. Design of an airborne Fourier transform visible hyperspectral imaging system for light aircraft environmental remote sensing. Proc. SPIE. 2480, Imaging Spectrometry (1995).
12. Tingkui Mu, Chunmin Zhang, Daochang Zhao. Analysis of a moderate resolution Fourier transform imaging spectrometer.  Opt. Communs.  282, 1699— 1705 (2009). https://doi.org/10.1016/j.optcom.2009.01.022
13. Yan Yuan, Xiubao Zhang, Chengming Sun, Zhiliang Zhou. Modeling of the temporally and spatially modulates Fourier transform imaging spectrometer working in orbit.  Optik.  122, 1576—1583 (2011). 
https://doi.org/10.1016/j.ijleo.2010.10.006
14. Yuen P. Richardson M. An introduction to hyperspectral imaging and its application for security, surveillance and target acquisition. Image Sci. J.  P. 1—13 (2010).