An algorithm of determination for spacecraft orientation with the use of a star sensor

1Nabivach, VE, 2Opanasenko, VM, 1Semeniv, OV, 1Yatsenko, VO
1Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine
2V. M. Glushkov Institute of Cybernetics of the National Academy of Science of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2011, 17 ;(1):84-89
https://doi.org/10.15407/knit2011.01.084
Publication Language: Russian
Abstract: 
An algorithm for the spacecraft orientation determination using a star sensor is described. The equation system which is used in the spacecraft orientation algorithm is proposed. We describe an algorithm for star recognition which is based on the application of the navigation catalogue and on the most informative characteristics. Some prospects for the PLD-based algorithm realization are discussed.
Keywords: informative characteristics, navigation catalogue, star sensor
References: 
1. Avanesov G. A., Krasikov V. A., Nikitin A. V. Assessment of the accuracy of the BOKZ-M instrument based on the results of ground and flight tests. Analysis of synchronous operation of two devices. In: Modern problems of determining the orientation and navigation of space vehicles, 44—45 (Tarusa, 2008) [in Russian].
2. Vapnik V. N., Chervonenkis A.Ya. Theory of Pattern Recognition, 415 p. (Nauka, Moscow, 1974) [in Russian].
3. Dyatlov S. A., Bessonov R. V. Overview of stellar spacecraft orientation sensors. In: Modern problems of determining the orientation and navigation of space vehicles, 11—31 (Tarusa, 2008) [in Russian].
4. Pratt W. Digital image processing, Vol. 1, 312 p. (Mir, Moscow, 1982) (Vols. 1-2) [in Russian].
5. Pratt W. Digital image processing, Vol. 2, 317—790 (Mir, Moscow, 1982) (Vols. 1-2) [in Russian].
6. Fedoseev V. I., Gerasimov S. A., Abakumov V. M., Isakov A. N. New star devices. In: Modern problems of determining the orientation and navigation of space vehicles, 12—13 (Tarusa, 2008) [in Russian].
 7. Accardo D., Rufino G. Brightness independent star-up routine for star trackers. IEEE Trans. Aerospace and Electron. Syst., 38 (3), 813—823 (2002).
https://doi.org/10.1109/TAES.2002.1039401
  8. Astola J., Haavisto P., Neuvo Y. Vector median filters. Proc. IEEE, 78 (4), 678—689 (1990).
https://doi.org/10.1109/5.54807
  9. Bardwell G. On-board artificial neural network multi-star identification system for 3-axis attitude determination. Acta Astron., 35, 753—761 (1995).
https://doi.org/10.1016/0094-5765(94)00247-J
10. Cole C. L., Crassidis J. L. Fast star-pattern recognition using planar triangles. J. Guid. Control and Dynam., 29, 64—71 (2006).
https://doi.org/10.2514/1.13314
11. Eisenman R., Liebe C. C., Joergensen J. L. The new generation of autonomous star trackers. Proc. SPIE, 3221, 524—535 (1997).
https://doi.org/10.1117/12.298121
12. Fossum E. R., Bartman R. K., Eisenman A. R. Application of the active pixel sensor concept to guidance and navigation. Proc. SPIE, 1949, 256—265 (1993).
https://doi.org/10.1117/12.157088
13. Guangjun Z., Wei X., Jiang J. Full-sky autonomous star identification based on radial and cyclic features of star pattern. Image Vision Comput., 26, 891—897 (2008).
https://doi.org/10.1016/j.imavis.2007.10.006
14. Kolomenkin M., Pollak S., Shimshoni I., Lindenbaum M. Geometric voting algorithm algorithm for star trackers. IEEE Trans. Aerospace and Electron. Syst., 44, 441—456 (2008).
https://doi.org/10.1109/TAES.2008.4560198
15. Lee H., Bang H. Star pattern identification technique by modified grid algorithm. IEEE Trans. Aerospace and Electron. Syst., 43, 202—213 (2007).
16. Liebe C. C. Accuracy performance of star trackers-a tutorial. IEEE Trans. Aerospace and Electron. Syst., 38 (2), 587—599 (2002).
https://doi.org/10.1109/TAES.2002.1008988
17. Lin T., Zhou J. L. All-sky automated quaternary star pattern recognition. J. Astronaut., 21, 82—85 (2000).
18. Mortari D. Search-less algorithm for star pattern recognition. J. Astronaut. Sci., 45 (2), 179—194 (1997).
19. Mortari D., Samaan M. A., Bruccoleri C. The pyramid star identification technique. Navigation, 51, 171—183 (2004).
https://doi.org/10.1002/j.2161-4296.2004.tb00349.x
20. Myers J. R., Sande C. B., Miller A. C., et al. SKY2000 Catalog, Version 4 (Myers+2002). SAO/NASA ADS Astronomy. vizier.cfa.harvard.edu. Retrieved from: 
21. Palagin A. V., Opanasenko V. N., Sakharin V. G. Features of digital devices design of modern PLD of the Xilinx incorporation. J. Automation and Inform. Sci., 33 (3), 80—89 (2001).
https://doi.org/10.1615/JAutomatInfScien.v33.i3.100
22. Padgett C., Kreutz-Delgado K., Udomkesmalee S. Evaluation of star identification techniques. J. Guid. Control and Dynam., 20 (2), 259—267 (1997).
https://doi.org/10.2514/2.4061 >
23. Rousseau G. L. A., Bostel J., Mazari B. Star recognition algorithm for APS star tracker: Oriented triangles. IEEE Aerospace and Electron. Syst. Mag., 20, 27—31 (2005).
https://doi.org/10.1109/MAES.2005.1397146
24. Samaan M. A., Mortari D., Junkins J. L. Nondimensional star identification for uncalibrated star cameras. J. Astronaut. Sci., 54, 95—111 (2006).
https://doi.org/10.1007/BF03256478
25. Wang Z. L., Quan W. An all-sky autonomous star map identification algorithm. IEEE Aerospace and Electron. Syst. Mag., 19, 10—14 (2004).
https://doi.org/10.1109/MAES.2004.1275309
26. Zhang G. J., Wei X. G., Jiang J. Star map identification based on a modified triangle algorithm. ACTA Aeronaut. ET Astronaut. SINICA, 27, 1150—1154 (2006).