Investigation and modeling of ionospheric plasma parameter variations during minimum period of the 23-th solar activity cycle
Heading:
1Dzyubanov, DA, 2Lyashenko, MV, 3Chernogor, LF 1National Technical University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine 2Institute of Ionosphere of the NAS of Ukraine and MES of Ukraine, Kharkiv, Ukraine 3V.N. Karazin National University of Kharkiv, Kharkiv, Ukraine |
Kosm. nauka tehnol. 2008, 14 ;(1):44-56 |
https://doi.org/10.15407/knit2008.01.044 |
Publication Language: Russian |
Abstract: Analysis results of diurnal and seasonal variations of ionospheric plasma parameters (electron density N, electron Te and ion Ti temperatures) for the 23-th solar activity cycle minimum are presented. Seasonal and semiannual F2-peak anomalies were confirmed. Semi-empirical simulation of geospace dynamic processes was carried out. Regional features of spatial and temporal distribution of ionospheric parameters over the Central Europe at solar activity minimum were revealed.
|
Keywords: anomalies, geospace plasma, solar activity |
References:
1. Akimov L. A., Grigorenko E. I., Taran V. I., et al. Integrated radio physical and optical studies of dynamic processes in the atmosphere and geospace caused by the solar eclipse of August 11, 1999. Zarubezhnaya radioelektronika. Uspekhi sovremennoi radioelektroniki, No. 2, 25—63 (2002) [in Russian].
2. Brjunelli B. E., Namgaladze A. A. Ionospheric physics, 528 p. (Nauka, Moscow, 1988) [in Russian].
3. Grigorenko E. I., Lysenko V. N., Pazjura S. A., et al. Anomalous Ionospheric Storm of March 21, 2003. Kosm. nauka tehnol., 10 (1), 4—11 (2004) [in Russian].
https://doi.org/10.15407/knit2004.01.004
https://doi.org/10.15407/knit2004.01.004
4. Dzyubanov D. A., Zakharov I. G., Lyashenko M. V. The simulation of noon electron density values of the F2 ionospheric peak with the use of Kharkiv incoherent scatter radar data use of the Doppler high-frequency radar. Kosm. nauka tehnol., 10 (2-3), 28—35 (2004) [in Russian].
https://doi.org/10.15407/knit2004.2-3.028
https://doi.org/10.15407/knit2004.2-3.028
5. Emel'yanov L. Ya., Grigorenko E. I., Sklyarov I. B. Radio-physical observations of vertical plasma drift in the F region of the ionosphere on the Kharkov non-coherent scattering radar. Radiotehnika: Vseukr. mezhved. nauch.-tehn. sb., Is. 136, 102—108 (2004) [in Russian].
6. Ivanov-Kholodny G. S., Mikhailov A.V. Prediction of the State of the Ionosphere, 190 p. (Gidrometeoizdat, Leningrad, 1980) [in Russian].
7. Lysenko V. N. Measuring the vertical component of the plasma-drift velocity and kinetic temperatures in the ionosphere. Geomagnetizm i Aeronomiia, 41 (3), 365—368 (2001) [in Russian].
8. Lyashenko M. V., Pulyaev V. A., Chernogor L. F. Diurnal and seasonal variations of ionospheric plasma parameters during rise solar activity period. Kosm. nauka tehnol., 12 (5-6), 58—68 (2006) [in Russian].
https://doi.org/10.15407/knit2006.5-6.058
https://doi.org/10.15407/knit2006.5-6.058
9. Lyashenko M. V., Sklyarov I. B., Chernogor L. F., Chernyak Yu. V. Diurnal and seasonal variations of ionospheric plasma parameters on solar activity abatement. Kosm. nauka tehnol., 12 (2-3), 45—58 (2006) [in Russian].
https://doi.org/10.15407/knit2006.2-3.045
https://doi.org/10.15407/knit2006.2-3.045
10. Lyashenko M. V., Chernogor L. F., Chernyak Yu. V. Diurnal and seasonal variations of ionospheric plasma parameters at maximum solar activity period. Kosm. nauka tehnol., 12 (4), 56—70 (2006) [in Russian].
https://doi.org/10.15407/knit2006.04.056
https://doi.org/10.15407/knit2006.04.056
11. Mikhailov A. V., Ostrovskii G. I. Winter increase in electron density in the nighttime F2 region and its possible explanation. Geomagnetizm i Aeronomiia, 20 (1), 29—32 (1980) [in Russian].
12. Rishbath H., Garriott O. K. Introduction to Ionospheric Physics, 304 p. (Gidrometeoizdat, Leningrad, 1975) [in Russian].
13. Taran V. I. A study of the natural and artificially disturbed ionosphere by the incoherent scatter method. Geomagnetizm i Aeronomiia, 41 (5), 659—666 (2001) [in Russian].
14. Chernogor L. F. Physics of Earth, Atmosphere, and Geospace from the Standpoint of System Paradigm. Radio Physics and Radio Astronomy, 8 (1), 59—68 (2003) [in Russian].
15. Chernogor L. F. The Earth-atmosphere-geospace environment system as an opened dynamic nonlinear one. Kosm. nauka tehnol., 9 (5-6), 96—105 (2003) [in Russian].
https://doi.org/10.15407/knit2003.5-6.096
https://doi.org/10.15407/knit2003.5-6.096
16. Chernogor L. F. The Earth-Atmosphere-Ionosphere-Magnetosphere as an Open Dynamic Nonlinear Physical System (pt. 1). Nelineinyi Mir, 4 (12), 655—697 (2006) [in Russian].
17. Chernogor L. F. The Earth-Atmosphere-Ionosphere-Magnetosphere as an Open Dynamic Nonlinear Physical System (pt. 2). Nelineinyi Mir, 5 (4), 198—231 (2007) [in Russian].
18. Bilitza D. International Reference Ionosphere 2000. Radio Sci., 36 (2), 261—275 (2001).
https://doi.org/10.1029/2000RS002432
https://doi.org/10.1029/2000RS002432
19. Evans J. V. Seasonal and sunspot cycle variations of F-region electron temperatures and protonospheric heat fluxes. J. Geophys. Res., 78 (13), 2344 (1973).
https://doi.org/10.1029/JA078i013p02344
https://doi.org/10.1029/JA078i013p02344
20. Farelo A. F., Herraiz M., Mikhailov A. V. Global morphology of night-time NmF2 enhancements. Ann. Geophysicae, 20, 1795—1806 (2002).
https://doi.org/10.5194/angeo-20-1795-2002
https://doi.org/10.5194/angeo-20-1795-2002
21. Mikhailov A. V., Schlegel K. Equinoctial transitions in the ionosphere and thermosphere. Ann. Geophysicae, 19, 783—796 (2001).
https://doi.org/10.5194/angeo-19-783-2001
https://doi.org/10.5194/angeo-19-783-2001
22. Picone J. M., Hedin A. E., Drob D. P., Aikin A. C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res., 107 (A12), 1 — 16 (2002).
https://doi.org/10.1029/2002JA009430
https://doi.org/10.1029/2002JA009430
23. Richards P. G. Seasonal and solar cycle variations of the ionospheric peak electron density: Comparison of measurement and models. J. Geophys. Res., 106 (A7), 12803—12819 (2001).
https://doi.org/10.1029/2000JA000365
https://doi.org/10.1029/2000JA000365
24. Rishbeth H. How the thermospheric circulation affects the ionospheric F2-layer. J. Atmos. Solar-Terr. Phys., 60, 1385—1402 (1998).
https://doi.org/10.1016/S1364-6826(98)00062-5
https://doi.org/10.1016/S1364-6826(98)00062-5
25. Rishbeth H., Muller-Wodarg I. C. F. Why is there more ionosphere in January than in July? The annual asymmetry in the F2-layer. Ann. Geophysicae, 24, 3293—3311 (2006).
https://doi.org/10.5194/angeo-24-3293-2006
https://doi.org/10.5194/angeo-24-3293-2006
26. Rishbeth H., Sedgemore-Schulthess K. J. F., Ulich T. Annual and semiannual variations in the ionospheric F2-layer: II. Physical discussion. Ann. Geophysicae, 18, 945—956 (2000).
https://doi.org/10.1007/s00585-000-0945-6
https://doi.org/10.1007/s00585-000-0945-6
27. Salah J. E., Evans J., Wand R. N. Seasonal variations in the thermosphere above Millstone Hill. Radio Sci., 9 (2), 231—238 (1974).
https://doi.org/10.1029/RS009i002p00231
https://doi.org/10.1029/RS009i002p00231
28. Schunk R. W., Nagy A. F. Ionospheres: physics, plasma physics, and chemistry. (Cambridge atmospheric and space science series). 555 p. (Cambridge, 2000).
29. Sethi N. K., Dabas R. S., Vohra V. K. Diurnal and seasonal variations of hmF2 deduced from digital ionosonde over New Delhi and its comparison with IRI 2001. Ann. Geophysicae, 22, 453—458 (2004).
https://doi.org/10.5194/angeo-22-453-2004
https://doi.org/10.5194/angeo-22-453-2004
30. Zang S., Holt J. M., Zalucha A. M. Midlatitude ionospheric plasma temperature climatology and empirical model based on Saint Santin incoherent scatter radar data from 1966 to 1987. J. Geophys. Res., 109 (A11) 1—9 (2004).