Degradation of polymeric materials for covering spacecraft solar arrays under exposure to atomic oxygen flows

1Shuvalov, VA, 2Tikhii, VG, 3Priymak, AI, 4Gusarova, IA, 1Pismennyi, NI, 1Tokmak, NA, 3Reznichenko, NP, 5Nosikov, SV, 3Kochubey, GS
1Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipro, Ukraine
2Yangel Yuzhnoye State Design Office, Dnipropetrovsk, Ukraine
3Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipropetrovsk, Ukraine
4Yangel Yuzhnoye State Design Office, Dnipro, Ukraine
5Institute of Technical Mechanics of the NAS of Ukraine and SSA of Ukraine, Dnipropetrovsk, Ukraine
Kosm. nauka tehnol. 2005, 11 ;(5-6):078-086
https://doi.org/10.15407/knit2005.05.078
Publication Language: Russian
Abstract: 
We developed a procedure and hard ware for physical and chemical modelling and conducting shortcut operational-life proof of degradation in weight, geometric and thermo-optical characteristics of polymers for spacecraft under prolonged exposure to supersonic fluxes of atomic oxygen in the Earth's ionosphere. Dependences of variation in the characteristics of polyimide films and carbon plastic materials on the integral fluence of atomic oxygen are derived.
References: 
1. Akishin A. I., Guzhova S. K. Ionospheric plasma interaction with materials and equipment of space apparatus. Fizika i himija obrabotki materialov, No. 3, 40—47 (1993) [in Russian].
2. Akishin A. I., Teplov I. B. Simulation of the effect of cosmic rays on materials. Fizika i himija obrabotki materialov, No. 3, 47—57 (1992) [in Russian].
3. Vojcenja V. S., Guzhova S. K., Titov V. I. Effects of low temperature plasma and electromagnetic radiation materials, 224 p. (Energoatomizdat, Moscow, 1991) [in Russian].
4. Gurevich A. V., Shvartsburg A. B. Nonlinear theory of propagation of radio waves in the ionosphere, 272 p. (Nauka, Moscow, 1973) [in Russian].
5. Kolesnikov A. F., Yakushin M. I. Determination of the effective probabilities of heterogeneous recombination of nitrogen and oxygen atoms from surface heat transfer data. In: Gagarin Scientific Studies in Astronautics and Aviation, 34—45 (Nauka, Moscow, 1989) [in Russian].
6. Kuvaldina E. V., Lyubimov V. K., Maksimov A. I., et al. The temperature dependence of the etching rates of polyimide film in the plasma. Khim. Vys. Energ., 24 (5), 471—477 (1990) [in Russian].
7. Kuvaldina E. V., Lyubimov V. K., Rybkin V. V. The rate constant and the probability of interaction of atomic oxygen with a polyimide film. Khim. Vys. Energ., 26 (5), 475—478 (1992) [in Russian].
8. Latiev L. N., Petrov V. A., Chekhovskiy V. Ya., and Shestakov E. N. Radiating properties of solid materials, 472 p. (Energia, Moscow, 1974) [in Russian].
9. McDaniel E. W. Collision Phenomena in Ionized Gases, 832 p. (Mir, Moscow, 1967) [in Russian].
10. Morrison S. Chemical physics of solid surface, 488 p. (Mir, Moscow, 1981) [in Russian].
11. Novitskiy L. A., Stepanov B. M. Material Optical Properties at Low Temperatures, 224 p. (Mashinostroenie, Moscow, 1980) [in Russian].
12. Kasaev K. S. (Ed.) New high technologies in engineering. Encyclopedia, Vol.17, 279 p. (ZAO NII JeNCITEH, Moscow, 2000) (Vols. 1-24; Vol. 17) [in Russian].
13. Pereverzev E.S. The models of damage accumulation in durability problems, 360 p. (Nauk.dumka, Kiev, 1995) [in Russian].
14. Reznichenko N. P., Shuvalov V. A. Transferring the energy of atomic ions from a supersonic flow of a partially dissociated gas to the surface of a solid. Zhurn. prikladnoj mehaniki i tehnicheskoj fiziki, No. 6, 11—19 (1989) [in Russian].
15. Chernik V. N., Naumov S. F., Demidov S. A. et al. Studies of polymer films with protective coatings for spacecrafts. Perspektivnye materialy, No. 6, 14—20 (2000) [in Russian].
16. Shuvalov V. A. Modeling the interaction of bodies with the ionosphere, 180 p. (Nauk. dumka, Kiev, 1995) [in Russian].
17. Shuvalov V. A., Kochubey G. S., Priymak A. I., et al. Simulation of Radiative Electrization of Spacecraft leeward surfaces in the Ionosphere. Kosm. nauka tehnol., 7 (5-6), 30—43 (2001) [in Russian].
18. Shuvalov V. A., Priymak A. I., Reznychenko N. P., et al. Contact diagnostics of the ionosphere and laboratory plasma. Kosm. nauka tehnol., 10 (2-3), 3—15 (2004) [in Russian].
19. Shuvalov V. A., Churilov A. E., Turchin V. V. Diagnostics of a stream of rarefied plasma using sounding and UHF methods. Teplofizika Vysokikh Temperatur, 16 (1), 9—16 (1978) [in Russian].
20. Allegri G., Corradi S., Marchetti M., et al. On the degradation of polymeric thin films in LEO space environment. In: Materials in a Space environment: Proc. 9th Intern. Symp., 255—264 (ESTEC, Noordwijk, 2003).
21. Koontz S., King G., Dunnet A., et al. Intelsat solar array coupon atomic oxygen flight experiment. J. Spacecraft and Rockets, 31 (3), 475—481 (1994).
https://doi.org/10.2514/3.26463
22. Paillous A. Spacecraft surface exposure to atomic oxygen in LEO. Technol. Environment spatial, 353—375 (Toulous, 1987).
23. Yokota K., Seikyn S., Tagava M., et al. A quantitative study in synergistic effects of atomic oxygen and ultraviolet regarding polymer erosion in LEO space environment. In: Materials in a Space environment: Proc. 9th Intern. Symp., 265—272 (ESTEC, Noordwijk, 2003).
24. Zimcik D. G., Maag C. R. Results of apparent atomic oxygen reactions with spacecraft materials during Shuttle flight STS-41G. J. Spacecraft and Rockets, 25 (2), 162—168 (1988).
https://doi.org/10.2514/3.25965

25. Zimcik D. G., Wertheimer M. R., Balmain K. B., et al. Plasma-deposited protective coating for spacecraft applications. J. Spacecraft and Rockets, 28 (6), 652—657 (1991).