High-precision trajectory determinations of low orbital space vehicles using the signals from the GNSS global navigation satellite system

1Zhalilo, AA, 2Khomyakov, EN, 3Flerko, SN, 4Volokh, KF
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine; Kharkіv National University of Radio Electronics of the Ministry of Education and Science of Ukraine, Kharkiv,Ukraine
2National Aerospace University “'Kharkiv Aviation Institute”, Kharkiv, Ukraine
3I. Kozhedub Kharkiv Air Force University, Kharkiv, Ukraine
4State Space Agency of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 1999, 5 ;(2):93–102
https://doi.org/10.15407/knit1999.02.093
Section: Space Navigation and Communications
Publication Language: Russian
Abstract: 
We propose and analyze several variants of organizing high-precision determination of low-orbital space vehicle trajectory parameters by the use of the GNSS global navigation satellite system. We also consider the peculiarities of realization and the accuracy of trajectory determination from the results of the joint processing of code and phase measurements made on board space vehicles and by the GNSS ground reference station network.
Keywords: code and phase measurements, GNSS, low orbital space vehicles
References: 
1. Averin S. V., Vinogradov A. A., Ivanov N. E., Salishchev V. A. Adaptivnyj algoritm kombinirovannogo ispol'zovanija sistem GLONASS i GPS v uslovijah chastichnogo maskirovanija signalov navigacionnyh sputnikov. In: Planirovanie global'noj radionavigacii: Sb. tr. Vtoroj mezhdunar. konf., Moscow, June 24—26, 1997, Vol. 1, 243—254 (NTC «Internavigacija», Moscow, 1997) [in Russian].
2. Vereshak A. P., Zhalilo A. A., Nozdrin I. G., Flerko S.N. Possibilities for realizing in Ukraine a wide-area differential navigation using the GPS and GLONASS signals. Kosm. nauka tehnol., 4 (5-6), 56–61 (1998) [in Russian].
https://doi.org/10.15407/knit1998.05.056
3. Vereshak A. P., Piskorzh V. V., Zhalilo A. A., et al. Concept of the development of the ukrainian navigation service system. Kosm. nauka tehnol., 4 (5-6), 46—55 (1998) [in Russian].
https://doi.org/10.15407/knit1998.05.046
4. Zhalilo A. A., Kot P. A., Minervin I. N., et al. Space vehicle navigation by means of GLONASS and NAVSTAR GPS signals.Kosm. nauka tehnol., 1 (1), 69—73 (1995) [in Russian].
https://doi.org/10.15407/knit1995.01.069
5. Ivanov A. I., Romanov L. M. Poligonnye navigacionnye izmerenija s ispol'zovaniem sputnikovoj radionavigacionnoj sistemy NAVSTAR. Zarubezhnaja radiojelektronika, No. 11, 16—29 (1989) [in Russian].
6. Kampan' P., Belon B., Provenzano Zh.-P. SCNS — novejshaja nizkozatratnaja koncepcija GNSS. In: Planirovanie global'noj radionavigacii: Sb. tr. Vtoroj mezhdunar. konf., Moscow, June 24—26, 1997, Vol. 1, 144—157 (NTC «Internavigacija», Moscow, 1997) [in Russian].
7. Kotsarenko N. Ya., Korepanov V. E., Ivchenko V. N. Investigations of the ionospheric precursors of earthquakes project "Poperedzhennya". Kosm. nauka tehnol., 1 (1), 96—99 (1995) [in Ukrainian].
 https://doi.org/10.15407/knit1995.01.096
8. Planirovanie global'noj radionavigacii: Sb. tr. Vtoroj mezhdunar. konf., Moscow, June 24—26, 1997, Vol. 1, 254 p.; Vol.2, 255— 489 (NTC «Internavigacija», Moscow, 1997) [in Russian].
9. Khomyakov E. N., Makarenko B. I., Trikoz D. V., Kashchenko V. S. Vozmozhnosti perspektivnoj global'noj navigacionno-svjaznoj sputnikovoj sistemy. Radiotehnika, No. 8, 60—64 (1996) [in Russian].
10. Dennehy C. J., Kia T., Welch R. V. Attitude determination and control subsystem for the TOPEX satellite. AIAA guid. Navigation and control conf., Mineapolis, 15—17 August, 1988, 655—665 (1988).
11. Dodson A., Baker H. The effect of tropospheric water vapor on GPS heights. Proc. 2nd European Symp. on GNSS'98, Toulouse, October 23—25, 1998, Vol. 1, V-P-02, P. 1—5 (1998).
12. Dodson A., Baker H., Elgerd G., Rius A., Rothacher M. The WAVEFRONT project on ground-based GPS water vapor estimation. Proc. 2nd European Symp. on GNSS'98, Toulouse, October 23—25, 1998, Vol. 1, V-O-08, P. 1 — 6 (1998).
13. Differential Satellite Navigational System. Proc. 5th Internal. Conf. on DSNS'96, St. Petersburg, Russia, May 20—24, 1996, Vol. 1, 2 (1996).
14. Federal Radionavigation Plan 1996. Department of Transportation and Department of Defense, OMB N 0704-0188, 212 p. (USA, 1996).
15. Global Navigation Satellite Systems. Proc. 2nd European Symp. on GNSS'98, Toulouse, France, October 23—25, 1998, Vol. 1—3 (1998).
16. ICAO GNSS DRAFT SARPS (GNSS standards and recommended practices). Ver. 4.0. (August 28, 1997).
17. Riley S., Aardoom E., Daly P. et al. A high-precision GPS/GLONASS/Inmarsat-3 receiver for differential space and terrestial applications. 5th Inter. Conf. on DSNS, St. Peterburg, Russia, 1996, Vol. 1, paper N 4 (1996).
18. Ripley M., Cooper J., Daly P. Development of a dual-frequency GNSS receiver for radio occulation measurements. Proc. 2nd European Symp. on GNSS'98, Toulouse, France, October 23—25, 1998, Vol. 2, IX-O-05, P. 1—6 (1998).
19. Tournier Th., Berthias J. P., Jayles C. et al. A precise on-board real time ephemeris and clock estimation for GNSS-2 concepts studied at CNES. Proc. 2nd European Symp. on GNSS'98, Toulouse, France, October 23—25, 1998, Vol. 2. IX-O-12, P. 1—3 (1998).
20. Vereshchak A. P., Piskorzh V. V., Zhalilo A. A., et al. The navigation service concept and the possibilities of realization of GNSS-1 wide area differential subsystem in Ukraine. Proc. 2nd European Symp. on GNSS'98, Toulouse, France, October 23—25, 1998, Vol. 1, II-P-03, P. 1—5 (1998).

21. Zhalilo A. A., Yakovchenko A. I. The realization technique and features of the GPS/GLONASS relative geodetic adjustment using float solution. Proc. 2nd European Symp. on GNSS'98, Toulouse, France, October 23—25, 1998, Vol. 2. IX-P-02, P. 1—5 (1998).