Generation of ion-cyclotron waves in flux transfer events
Heading:
1Ivchenko, MV, 2Blecki, J 1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine 2The Space Agency of Poland, Warsaw, Poland |
Kosm. nauka tehnol. 1996, 2 ;(3):97–102 |
https://doi.org/10.15407/knit1996.05.097 |
Publication Language: Ukrainian |
Abstract: Flux Transfer Events at the dayside magnetopause are considered to be a result of transient and patchy reconnection taking place at the dayside magnetopause. A mechanism is proposed for generation of low-frequency electrostatic waves often observed in the events. In the open flux tube model of Flux Transfer Events magnetosheath and magnetospheric plasma populations mix on the open field lines. Using the zero net current condition, we show that the magnetosheath electrons are accelerated in order to compensate the current carried by hot magnetosphere electrons. A number of realistic sets of parameters for both plasma populations were used for numerical solution of the dispersion relation in the electrostatic approximation. Some of the solutions are presented. Questions related to the instability are discussed.
|
Keywords: generation, ion-cyclotron waves |
References:
Sytenko O. G., Mal'njev V. M. Fundamentals of plasma theory, 366 p. (Nauk. dumka, Kyiv, 1994) [in Ukrainian].
Anderson R. R., Harvey C. C., Hoppe M. M., et al. Plasma waves near the magnetopause. J. Geophys. Res., 87, P. 2087 (1982).
https://doi.org/10.1029/JA087iA04p02087
https://doi.org/10.1029/JA087iA04p02087
Berchem J., Russell C. T. Flux transfer events on the magnetopause — spatial distribution and controlling factors. J. Geophys.Res., 80, P. 6689 (1984).
https://doi.org/10.1029/JA089iA08p06689
https://doi.org/10.1029/JA089iA08p06689
Blecki J., Denis M., Kossacki K. (jr), Woolliscroft L. J. C. Plasma waves as a signature of flux transfer events. Proc. Int. Workshop on Space Physics Investigations by Cluster and Regata, Graz, Austria, 1990, ESA SP-306 (1990).
Blecki J., Kossacki K., Klimov S. J., et al. ELF/ULF waves observed on Prognoz-8 near the magnetopause. Artificial Satellites Space Phys., 7 (22), P. 5 (1987).
Kawano H., Kokubun S., Takashi K. Survey of transient magnetic field events in the dayside magnetosphere. J. Geophys.Res., 97, P. 10677 (1992).
https://doi.org/10.1029/92JA00369
https://doi.org/10.1029/92JA00369
LaBelle J., Treumann R. A., Haerendel G., et al. AMPTE IRM observations of waves associated with flux transfer events in the magnetosphere. J. Geophys. Res., 92, P. 5827 (1987).
https://doi.org/10.1029/JA092iA06p05827
https://doi.org/10.1029/JA092iA06p05827
Paschmann G., Haerendel G., Papamastorakis I., and Skopke N. Plasma and magnetic field characteristics of magnetic flux transfer events. J. Geophys. Res., 87, P. 2159 (1982).
https://doi.org/10.1029/JA087iA04p02159
https://doi.org/10.1029/JA087iA04p02159
Rijnbeek R. P., Cowley S. W. H., Southwood D. J. A survey of dayside flux transfer events observed by ISEE 1 and 2 magnetometers. J. Geophys. Res., 89, P. 786 (1984).
https://doi.org/10.1029/JA089iA02p00786
https://doi.org/10.1029/JA089iA02p00786
Russel C. T., Elphic R. C. ISEE observations of flux transfer events at the dayside magnetopause. Geophys. Res. Lett., 6 (1), P. 33 (1979).
https://doi.org/10.1029/GL006i001p00033
https://doi.org/10.1029/GL006i001p00033
Schmitt J. P. M. Mathematical properties of plasma dispersion function. J. Plasma Phys., 12, P. 51 (1974).
https://doi.org/10.1017/S0022377800024922