Power consumption of major factors of heat absorption in aerodynamic heating of heat-protective coatings of objects of space-rocket engineering. II. Limit power consumption of surface processes of absorption of heat at thermal destruction of a material

1Frolov, GA
1I.N. Frantsevich Institute for Material Science Problems, NAS of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2003, 9 ;(2-3):068-076
https://doi.org/10.15407/knit2003.02.068
Publication Language: Russian
Abstract: 
We generalize results of numerical and experimental investigations of thermal destruction of materials over a wide range of thermogas dynamic parameters of a gas flow modelling the aerodynamic heating of heat-protective coatings (HPC). We determined the parameter of stabilization of the ablation. It is approximately equal to double the maximum thermal effect of physical and chemical processes on the surface of a disintegrating material (ΔԚω)max. We found an interrelation between (ΔԚω)max and heats of evaporation of individual substances and the a constant of thermal destruction of a material. This constant was established from an analysis of the non-stationary warm-up and ablation of HPC. Our results allow us to prove the validity of the established law for porous cooling of a body up to a value of dimensionless speed of injection of 9. 
Keywords: heat-protective coatings, space-rocket engineering, thermal destruction
References: 
1. Abaltusov V. E. Study of heat transfer on a permeable surface in the presence of injection. Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Tekh. Nauk, No. 10, Is. 2, 10—13 (1985) [in Russian].
2. Avduevskii V. S., Glebov G. A. Heat exchange in the neighborhood of the stagnation point on a permeable surface. Inzhenerno-Fizicheskii Zhurnal, 18 (5), 777—781 (1970) [in Russian].
https://doi.org/10.1007/BF00829376
3. Anfimov N. A., Al'tov V. V. Heat transfer, friction, and mass transfer in a laminar multicomponent boundary layer with injection of foreign gases. Teplofiz. vysokikh temperatur, 3 (3), 409—420 (1965) [in Russian].
4. Vargaftik N. B. Handbook of Thermophysical Properties of Gases and Liquids, 720 p. (Nauka, Moscow, 1972) [in Russian].
5. Gorskii V. V., Surzhikov S. T. Fracture characteristics of glass-graphite bodies in a partially ionized air flow. Inzhenerno-Fizicheskii Zhurnal, 42 (4), 640—645 (1982) [in Russian].
https://doi.org/10.1007/BF00826850
6. Kuzmich V. V. Investigation of the destruction of fiberglass based on a filler made of silica fiber and an epoxy binder under quasi-stationary heating. In: Osobennosti processov teplo- i massoobmena, 194—197 (IT MO AN BSSR, Minsk, 1979) [in Russian].
7. Lundell J. H., Dickey R. R. Ablation of ATJ Graphite at High Temperatures. Raket. tehn. i kosmonavtika, 11 (2), 111 — 119 (1973) [in Russian].
8. Kudryavtsev I. V. (Ed.) Materials in mechanical engineering, Vol. 1, 304 p. (Mashinostroenie, Moscow, 1969) [in Russian].
9. Mugalev V. P. Effect of the blowing of various gases on heat transfer near the leading critical point of a blunt body. Izv. Akad. Nauk SSSR, Mekhanika zhidkosti i gaza, No. 1, 175—180 (1965) [in Russian].
10. Polezhaev Yu. V., Frolov G. A. Laws of thermal disintegration in the interaction of a body with a high-speed gas flow. Inzhenerno-Fizicheskii Zhurnal, 57 (3), 357—363 (1989) [in Russian].
https://doi.org/10.1007/BF00870805
11. Polezhaev Yu. V., Yurevich F. B. Thermal protection, 392 p. (Energia, Moscow, 1976) [in Russian].
12. Kikoin I. K. (Ed.) Tables of Physical Quantities: Handbook, 1006 p. (Atomizdat, Moscow, 1976) [in Russian]
13. Thermodynamic properties of individual substances, Handbook in 4 volumes, Vols. 1—4 (Nauka, Moscow, 1979—1982) [in Russian].
14. Frolov G. A. Effect of the type of heating on the rate of destruction of materials. Inzhenerno-Fizicheskii Zhurnal, 50 (4), 629—635 (1986) [in Russian].
https://doi.org/10.1007/BF00871072
15. Frolov G. A. Influence of various factors upon evaporation of materials in a high-temperature gas flow. In: Heat and Mass Transfer MIF-96, Vol. 3, 55—59 (Minsk, 1996) [in Russian].
16. Frolov G. A., Pasichnyi V. V., Polezhaev Yu. V., et al. Evaluating the fracture energy of a material from its heat content. Inzhenerno-Fizicheskii Zhurnal, 50 (5), 709— 718 (1986) [in Russian].
https://doi.org/10.1007/BF00870699
17. Frolov G. A., Pasichnyi V. V., Polezhaev Yu. V., Choba A. V. Model of thermal destruction of material subjected to one-sided heating. Inzhenerno-Fizicheskii Zhurnal, 52 (1), 33—37 (1987) [in Russian].
https://doi.org/10.1007/BF00870196
18. Frolov G. A., Polezhaev Yu. V., Pasichnyi V. V. Rate of material destruction under unilateral heating. Inzhenerno-Fizicheskii Zhurnal, 52 (4), 533—540 (1987) [in Russian].
https://doi.org/10.1007/BF00872028
19. Frolov G. A., Polezhaev Yu. V., Pasichnyi V. V. Effect of internal and surface processes of heat absorption on the heating and destruction of a material. Inzhenerno-Fizicheskii Zhurnal, 53 (4), 533—540 (1987) [in Russian].
https://doi.org/10.1007/BF00872435
20. Yurevich F. B. Behavior of polymer materials in a plasma jet. In: Heat and Mass  Transfer and Thermal Properties of Materials, 145—154 (ITMO AN BSSR, Minsk, 1969) [in Russian].

21. Feldhuhm R. N. Heat transfer from a turbulent boundary layer on porous hemisphere. AIAA Paper, No. 119 (1976).