Problems on scientific and methodical maintenance of development and operation of heat-protective coatings for heat-stressed elements of objects of space-rocket engineering.ІІ. Experimental modelling of aerodynamic heating of heat-protective coatings

1Frolov, GA, Pasichnyi, VV, 2Timoshenko, VI
1I.N. Frantsevich Institute for Material Science Problems, NAS of Ukraine, Kyiv, Ukraine
2Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipropetrovsk, Ukraine
Kosm. nauka tehnol. 2003, 9 ;(2-3):045-057
https://doi.org/10.15407/knit2003.02.045
Publication Language: Russian
Abstract: 
The dependence of the effective enthalpy of heat-protective materials on heating conditions is investigated. We derived parameters and equations which allow one to determine the effective enthalpy of a material in view of the non-stationary mode of ablation of weight. A method for the calculation of the non-stationary mode of destruction of a material without resort to high-temperature values of heat conductivity is developed. We present a complex of stands and installations for the study of the high-temperature destruction of materials at convective, radiating and radiating-convective types of heating. The complex is created in IPMS NAS of Ukraine.
Keywords: experimental modelling, heat-protective coatings, space-rocket engineering
References: 
1. Avduevskii V. S., Galitseisky B. M., Glebov G. A., et al. Principles of Heat Transfer in Aviation and Rocket Space Technology, 623 p. (Mashinostroenie, Moscow, 1975) [in Russian].
2. Vishnyak V. F., Panchenko V. N., Frolov G. A., et al. Calculation of friction and heat transfer in turbulent flow of a compressible gas in a plane duct. Inzhenerno-Fizicheskii Zhurnal, 48 (1), 19—23 (1985) [in Russian].
3. Vishnyak V. F., Panchenko V. N., Frolov G. A., et al. Optimization of the geometry of a rectangular duct for low-gradient flow generation. Inzhenerno-Fizicheskii Zhurnal, 54 (6), 930—934 (1988) [in Russian].
https://doi.org/10.1007/BF01102647
4. Gerhard Th. Determination of heat flux in a turbulent boundary layer with a pressure gradient. Raket. Tekh. Kosmon., No. 11, 161 — 163 (1973) [in Russian].
5. Goldaev I. P., Pershin A. P., Sabodazh V. P., and Latka V. Yu. An investigation of heat exchange in the flow of a high-temperature gas stream onto a plane surface. In: Samoletostr. Tekh. Vozdushn. Flota, No. 32, 23—25 (Izd-vo Kharkov. un-ta, Kharkov, 1973) [in Russian].
6. Dedyakin B. V., Lel'chuk V. L. Heat transfer from a wall to a turbulent flow of air inside a pipe with large temperature heads and calculation of wall temperature. Teploenergetika, No. 9, 74—79 (1958) [in Russian].
7. Kutateladze S. S., Leont'ev A. A. Heat and Mass Transfer in a Turbulent Boundary Layer, 344 p. (Énergiya, Moscow, 1972) [in Russian].
8. Landell J. H., Dicky R. R., Jones J. V. Characteristics of coking ablating materials in the process of combustion on the surface in diffusion mode. Raket. tehn. i kosmonavtika, No. 6, 155—166 (1968) [in Russian].
9. Landell J. H., Wakefield R. M., Jones J. V. Experimental study of caking ablative materials under combined action of convective and radiation heating. Raket. tehn. i kosmonavtika, No. 11, 136—148 (1965) [in Russian].
10. Nazarchuk M. M., Kovetskaya M. M., Panchenko V. N. Reverse Transition of Turbulent Flow into Laminar, 94 p. (Naukova dumka, Kiev, 1974) [in Russian].
11. Petukhov B. S., Kirillov V. D. Heat transfer in the turbulent flow of a compressible gas in the M region up to 4. Teploenergetika, No. 5, 64—72 (1960) [in Russian].
12. Polezhaev Yu. V., Frolov G. A. Self-similar heating regime upon destruction of the surface of materials. Inzhenerno-Fizicheskii Zhurnal, 50 (2), 236—240 (1986) [in Russian].
https://doi.org/10.1007/BF00870082
13. Polezhaev Yu. V., Frolov G. A. Quantitative relationships governing the establishment of a quasisteady destruction regime on unilaterial material heating. Inzhenerno-Fizicheskii Zhurnal, 56 (4), 533—539 (1989) [in Russian].
https://doi.org/10.1007/BF00870585
14. Polezhaev Yu. V., Frolov G. A. Influence of thermal conductivity of a material on an unsteady heat removal parameter. Inzhenerno-Fizicheskii Zhurnal, 62 (4), 546—551 (1992) [in Russian].
https://doi.org/10.1007/BF00854951
15. Polezhaev Yu. V., Yurevich F. B. Thermal protection, 392 p. (Energia, Moscow, 1976) [in Russian].
16. Timoshenko V. I. Features of thermochemical destruction of the graphite surface of a blunt cone in a hypersonic gas flow. In: Applied Aerodynamics of Spacecraft, 45—49 (Naukova Dumka, Kiev, 1977) [in Russian].
17. Timoshenko V. I. Effect of boundary-layer injection on the drag of an axisymmetric body in a hypersonic imperfect-gas flow. Inzhenerno-Fizicheskii Zhurnal, 42 (5), 746—750 (1982) [in Russian].
https://doi.org/10.1007/BF00824941
18. Timoshenko V. I. Supersonic Flows of Viscous Gas, 187 p. (Naukova Dumka, Kiev, 1987) [in Russian].
19. Frolov G. A. Effect of the type of heating on the rate of destruction of materials. Inzhenerno-Fizicheskii Zhurnal, 50 (4), 629—635 (1986) [in Russian].
https://doi.org/10.1007/BF00871072
20. Frolov G. A. Main laws governing nonstationary mass entrainment in interaction  of material with a high-temperature medium. In: Heat and Mass Transfer MIF-92, Vol. 3, 133—136 (Minsk, 1992) [in Russian].
21. Frolov G. A. Influence of various factors upon evaporation of materials in a high-temperature gas flow. In: Heat and Mass Transfer MIF-96, Vol. 3, 55—59 (Minsk, 1996) [in Russian].
22. Frolov G. A., Dvernyakov V. S., Pasichnyi V. V., and Zakharov F. I. Experimental study of heat transfer of a subsonic and supersonic plasma jet with a hot surface. Inzhenerno-Fizicheskii Zhurnal, 40 (6), 965—969 (1981) [in Russian].
23. Frolov G. A., Pasichnyi V. V., Zakharov F. I., et al. Unit for studying heat and mass transfer and friction in a rectangular channel at reduced pressure. Inzhenerno-Fizicheskii Zhurnal, 47 (6), 885—892 (1984) [in Russian].
https://doi.org/10.1007/BF00870051
24. Frolov G. A., Pasichnyi V. V., Polezhaev Yu. V., et al. Evaluating the fracture energy of a material from its heat content. Inzhenerno-Fizicheskii Zhurnal, 50 (5), 709— 718 (1986) [in Russian].
https://doi.org/10.1007/BF00870699
25. Frolov G. A., Pasichnyi V. V., Polezhaev Yu. V., Choba A. V. Model of thermal destruction of material subjected to one-sided heating. Inzhenerno-Fizicheskii Zhurnal, 52 (1), 33—37 (1987) [in Russian].
https://doi.org/10.1007/BF00870196
26. Frolov G. A., Polezhaev Yu. V., Pasichnyi V. V. Effect of internal and surface processes of heat absorption on the heating and destruction of a material. Inzhenerno-Fizicheskii Zhurnal, 53 (4), 533—540 (1987) [in Russian].
https://doi.org/10.1007/BF00872435
27. Frolov G. A., Polezhaev Yu. V., Pasichnyi V. V. Rate of material destruction under unilateral heating. Inzhenerno-Fizicheskii Zhurnal, 52 (4), 533—540 (1987) [in Russian].
https://doi.org/10.1007/BF00872028
28. Adams M. C., Powers W. E., Georgiev S. J. An experimental and Theoretical Study of Quarts Ablation at the Stagnation Point. J. Aero/Space Sci., 27 (7), 535—547 (1960).
29. Frolov G. Application of the High Temperature Heating Installation for Gradient Material Obtaining. FGM News, No. 28, 16—20 (1995).

30. Zakharov F. I., Frolov G. A. High temperature investigation of composite gradient materials in non-equilibrium air plasma. In: 3rd Inter. Sympos. on FGM (Switzerland, 1995).