NOAP – script package for planning and analysis of NEO observations

1Kozhukhov, ОМ, 1Medina, MS
1National Space Facilities Control and Test Center, State Space Agency of Ukraine, 8, Kniaziv Ostrozkykh Str., Kyiv, 01010 Ukraine
Space Sci. & Technol. 2023, 29 ;(6):080-092
https://doi.org/10.15407/knit2023.06.080
Publication Language: English
Abstract: 
We present a package of Python scripts NOAP (NEO Observations Analyzer and Planner) designed for the automatic planning of NEO observations, as well as analysis of already existing observations in the NEODyS-2 database.
The package is divided into two parts: analyzer and planner. The analyzer automatically downloads data from the NEODyS-2 database, converts them by adding additional information, including the apparent speed of objects and observation errors along and across the track, and also provides a large amount of statistical data and graphs for the selected period. It can be done for several observatories at once.
        The planner also selects the objects of observation for the upcoming night and calculates their ephemeris with a given step in a fully automatic mode. The output data format of the scheduler allows its use both on semi-automatic telescopes and for fully robotic observations. NOAP has been successfully used for more than a year for planning and analysis of NEO observations by optical sensors of the National Space Facilities Control and Test Center of the State Space Agency of Ukraine.
Keywords: NEO, optical observations
References: 

1. Asteroid Terrestrial-impact Last Alert System
URL: https://atlas.fallingstar.com/home.php [Last accessed 15 October 2023]

2. Astrometrica.
URL: http://www.astrometrica.at/.

3. Beautiful Soup Documentation.
URL: https://beautiful-soup-4.readthedocs.io/en/latest/[Last accessed 15 October 2023] .

4. Chapman C. R., Morrison D. (1989). Cosmic Catastrophes. New York: Plenum Press
https://doi.org/10.1007/978-1-4899-6553-0

5. CLOSE APPROACHES.
URL: https://neo.ssa.esa.int/close-approaches [Last accessed 15 October 2023]

6. CLOSE APPROACHES.
URL: https://newton.spacedys.com/index.php?pc=3.3 [Last accessed 15 October 2023]

7. Configparser 6.0.0
https://pypi.org/project/configparser/ [Last accessed 15 October 2023]

8. datetime - Basic date and time types.
URL: https://docs.python.org/3/library/datetime.html [Last accessed 15 October 2023]

9. Denneau L., Jedicke R., Grav T. (2013). The Pan-STARRS Moving Object Processing System. Publications of the Astronomical Society of the Pacific, 125, 357-395.
https://doi.org/10.1086/670337

10. Ginsburg A., Sipőcz B.M., Brasseur C.E. et al. (2019). astroquery: An Astronomical Web-querying Package in Python. The Astronomical Journal, 157, 98.
https://doi.org/10.3847/1538-3881/aafc33

11. Gural P.S., Larsen J.A., Gleason A.E. (2005.) Matched Filter Processing for Asteroid Detection. The Astronomical Journal, 130, 1951-1960.
https://doi.org/10.1086/444415

12. Haeusler B. (2023). NEO Planner V4.6 - CCD/CMOS Parameters - Explanations.
URL: https://www.b82maidbronn.de/neoplanner_CCDParameters.htm) [Last accessed 20 September 2023].

13. Heinze A.N., Metchev S., Trollo J. (2015). Digital Tracking Observations can Discover Asteroids 10 Times Fainter than Conventional Searches. The Astronomical Journal, 150, 125.
https://doi.org/10.1088/0004-6256/150/4/125

14. Horizons System. URL: https://ssd.jpl.nasa.gov/horizons/ [Last accessed 15 October 2023]

15. Hough P.V.C. (1962). Method and means for recognizing complex patterns, Pat. 3069354 USA.

16. Hunter J.D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, 9, 3, 90 ‑ 95.
https://doi.org/10.1109/MCSE.2007.55

17. Kozhukhov O., Maigurova N., Pomazan A. (2017). Results from optical CCD observations of asteroid 2014 JO25 during its close approach to the Earth on April 19 2017. Bulletin of Taras Shevchenko National University of Kyiv. Astronomy, 56, 22-25.
https://doi.org/10.17721/btsnua.2017.56.22-25 [in Ukrainian]
https://doi.org/10.17721/BTSNUA.2017.56.22-25

18. Kozhukhov A.M., Maigurova N.V., Pomazan A.V., Kryuchkovskiy V.F. (2013). Observations of Apophis in NSFCTC (Yevpatoria) and RI NAO (Mykolaiv). Odessa Astronomical Publications, 26/1, 70-72

19. Kubica, J., Denneau L., Grav T. et al. (2007). Efficient intra- and inter-night linking of asteroid detections using kd-trees. Icarus, 189, 1, 151-168
https://doi.org/10.1016/j.icarus.2007.01.008

20. Lee J., Zubair L., Virani S., Murphy T., Holzinger M.J. Hardware-in-the-Loop Comparison of Space Object Detection and Tracking Methodologies. AAS 16-266

21. math - Mathematical functions.
URL: https://docs.python.org/3/library/math.html [Last accessed 15 October 2023]

22. Minor Planet & Comet Ephemeris Service.
URL: https://minorplanetcenter.net/iau/MPEph/MPEph.html [Last accessed 15 October 2023]

23. Miura N., Itagaki K., Baba N. (2005). Likelihood-Based Method for Detecting Faint Moving Objects. The Astronomical Journal, 130, 1278-1285
https://doi.org/10.1086/431955

24. Mohanty N. C. (1981). Computer Tracking of Moving Point Targets in Space. IEEE Transactions on Pattern Analysis & Machine Intelligence, 3, 606-611
https://doi.org/10.1109/TPAMI.1981.4767153

25. MPEC 2017-X85: 2017 XS.
URL: https://www.minorplanetcenter.net/mpec/K17/K17X85.html [Last accessed 15 November 2023]

26. MPEC 2018-C14: 2018 BA7.
URL: https://www.minorplanetcenter.net/mpec/K18/K18C14.html [Last accessed 15 November 2023]

27. Murphy T.S., Holzinger M.J. (2016). Uncued Low SNR Detection with Likelihood from Image Multi Bernoulli Filter.
URL: https://amostech.com/TechnicalPapers/2016/SSA-Algorithms/Murphy.pdf [Last accessed 15 November 2023]

28. NumPy.
URL: https://numpy.org/ [Last accessed 15 October 2023]

29. Observable-Object List Customizer.
URL: https://minorplanetcenter.net/iau/lists/Customize.html [Last accessed 15 October 2023]

30. OBSERVATIONAL QUERY.
URL: https://newton.spacedys.com/index.php?pc=3.2 [Last accessed 15 October 2023]

31. pandas.
URL: https://pandas.pydata.org/ [Last accessed 15 October 2023]

32. Pan-STARRS.
URL: http://legacy.ifa.hawaii.edu/research/Pan-STARRS.shtml. [Last accessed 15 October 2023]

33. parhamfh/jdutil.py.
URL: https://gist.github.com/parhamfh/0b9b3116296fa1a944a1 [Last accessed 15 October 2023]

34. Parrot D. Tycho Tracker: A New Tool to Facilitate the Discovery and Recovery of Asteroids Using Synthetic Tracking and Modern GPU Hardware.
URL: https://drive.google.com/file/d/1ApjYChayGpL9Y9H85wQBjel3n9z0UT2B/view [Last accessed 15 November 2023]

35. PRIORITY LIST.
URL: https://neo.ssa.esa.int/priority-list [Last accessed 15 October 2023]

36. Python.
URL: https://www.python.org [Last accessed 15 October 2023]

37. Radon, J. (1917). Berichte ber die Verhandlungen der Kniglich-Schsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse, 262 translated by Parks, P. C. (1986). IEEE Transactions on Medical Imaging, 5, 170

38. re - Regular expression operations.
URL: https://docs.python.org/3/library/re.html [Last accessed 15 October 2023]

39. Reddy V., Kelley M.S., Farnocchia D. et al. (2019). Near-Earth asteroid 2012 TC4 observing campaign: Results from a global planetary defense exercise. Icarus, 326, 133-150.
https://doi.org/10.1016/j.icarus.2019.02.018

40. Requests: HTTP for Humans™.
URL: https://requests.readthedocs.io/en/latest/ [Last accessed 15 October 2023]

41. Report of the Scientific and Technical Subcommittee on its forty-fourth session, held in Vienna from 12 to 23 February 2007 - United Nations, General Assembly, Committee on the Peaceful Uses of Outer Space Fiftieth session Vienna, 6-15 June 2007.
URL: https://www.unoosa.org/pdf/reports/ac105/AC105_890E.pdf. [Last accessed 15 October 2023]

42. Rhodes B. (2019). Skyfield: High precision research-grade positions for planets and Earth satellites generator. Astrophysics Source Code Library, record ascl:1907.024.
URL: https://ascl.net/1907.024 [Last accessed 15 October 2023]

43. Richards G. (1996). Application of the Hough transform as a track-before-detect method. IEE Colloquiumon Target Tracking and Data Fusion, 2/1-2/3.
https://doi.org/10.1049/ic:19961349

44. Savanevych V.E., Briukhovetskyi A.B., Ivashchenko Yu. N. et al. (2015). Comparative analysis of the positional accuracy of CCD measurements of small bodies in the solar system: software CoLiTec and Astrometrica. Kinematics and Physics of Celestial Bodies, 31, 302-313.
https://doi.org/10.3103/S0884591315060045

45. Savanevich V. E., Bryukhovetskiy A. B., Kozhukhov A. M., Dikov E. N., Vlasenko V. P. (2012). The Program CoLiTec for Automated Detection of Faint Celestial Bodies. Space Science and Technology, 18, 1, 39-46
https://doi.org/10.15407/knit2012.01.039

46. Savanevich V.E., Bryukhovetskiy A. B., Kozhukhov A. M., Dikov E. N. (2011). The Method of Asteroid Detection, Based on After-Treshold Accumulation of Signal Statistic In Space of Asteroid Trajectory Parameters. Systemy Obrobky Informatsii, 2(92), 137 - 144 [in Russian].

47. Savanevych V.E., Briukhovetskyi O.B., Sokovikova N.S. et al. (2015). A new method based on the subpixel Gaussian model for accurate estimation of asteroid coordinates. Monthly Notices of the Royal Astronomical Society, 451, 3287-3298.
https://doi.org/10.1093/mnras/stv1124

48. Savanevych, V.E., KhlamovS.V., Vavilova I.B. et.al. (2018). A method of immediate detection of objects with a near-zero apparent motion in series of CCD-frames. Astronomy and Astrophysics, 609, A54.
https://doi.org/10.1051/0004-6361/201630323

49. Stokes G. H., Evans, J. B., Viggh, H. E. M., Shelly, F. C., & Pearce, E. C. (2000) Lincoln Near-Earth Asteroid Program (LINEAR). Icarus, 148, 21-28
https://doi.org/10.1006/icar.2000.6493

50. Stokes G. H., Shelly F., Viggh H.E.M. et al. (1998). The Lincoln Near-Earth Asteroid Research (LINEAR) Program. Lincoln Laboratory Journal, 11, 1, 27-40

51. sys - System-specific parameters and functions.
URL: https://docs.python.org/3/library/sys.html [Last accessed 15 October 2023] [in English].

52. The Astropy Collaboration, Price-Whelan A.M., Lim P.L. et al. (2022). The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package. The Astrophysical Journal, 935, 167.
https://doi.org/10.3847/1538-4357/ac7c74

53. The Astropy Collaboration, Price-Whelan A.M., Sipőcz B.M. et al. (2018). The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package. The Astronomical Journal, 156, 123.
https://doi.org/10.3847/1538-3881/aabc4f

54. The Astropy Collaboration, Robitaille T.P., Tollerud E.J. et al. (2013). Astropy: A community Python package for astronomy. Astronomy & Astrophysics, 558, A33.
https://doi.org/10.1051/0004-6361/201322068

55. The NEO Confirmation Page. URL: https://minorplanetcenter.net/iau/NEO/toconfirm_tabular.html [Last accessed 15 October 2023]

56. Thuillot W.; Bancelin D.; Ivantsov A. et al. (2015). The astrometric Gaia-FUN-SSO observation campaign of 99 942 Apophis. Astronomy & Astrophysics, 583, A59.
https://doi.org/10.1051/0004-6361/201425603

57. URL: https://newton.spacedys.com/priority_list/PLfile.txt [Last accessed 15 October 2023]

58. Wang, B., Zhao, H.B., Li, B. (2017). Detection of Faint Asteroids Based on Image Shifting and Stacking Method. Acta Astronomica Sinica, 58, 5, 49

59. Yanagisawa T., Kurosaki H. (2012). Detection of Faint GEO Objects Using JAXA's Fast Analysis Methods. Trans. JSASS Aerospace Tech. Japan, 10, ists28, Pr_29-Pr_35
https://doi.org/10.2322/tastj.10.Pr_29

60. 27. Yanagisawa T., Nakajima A., Kadota K. et al. (2005). Automatic Detection Algorithm for Small Moving Objects. Publications of the Astronomical Society of Japan, 57, 399-408
https://doi.org/10.1093/pasj/57.2.399

61. Zhai C., Shao M., Nemati B. et al. (2014). Detection of a Faint Fast-Moving Near-Earth Asteroid Using the Synthetic Tracking Technique. The Astrophysical Journal, 792, 60.
https://doi.org/10.1088/0004-637X/792/1/60