Development of vibration protection systems of spacecraft – state of the art and perspectives
1Pylypenko, OV, 1Khoroshylov, SV, 1Nikolayev, DO 1Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipro, Ukraine |
Space Sci. & Technol. 2023, 29 ;(5):003-019 |
https://doi.org/10.15407/knit2023.05.003 |
Publication Language: English |
Abstract: Vibration loads on the launch vehicle and spacecraft can reach a high level, leading to abnormal and emergency situations. Therefore, the spacecraft structure must not only support the payload and subsystems of the spacecraft but also have sufficient strength and rigidity to exclude any emergencies (damage, destruction, unwanted deformations of the structure, failure and failure of instruments and equipment) that may interfere with the success of the mission. The article aims to analyze the state of research on the design of vibration protection systems for spacecraft launched into working orbits by modern launch vehicles. The results of this analysis will contribute to the development of fundamental schemes of vibration protection systems and methods for effectively suppressing spacecraft spatial vibrations.
It is shown that the development of new promising vibration protection systems will take place in the following directions: increasing the frequency range and damping parameters of the dynamic coupled system of “spacecraft and vibration isolation system”; changing approach to vibration suppression of the entire spacecraft (as a whole unit) to setting up the system for damping individual (the most responsible and vibration-sensitive) spacecraft; the use the spacecraft active vibration suppression system in combination with a passive vibration protection system; use of schematic diagrams of spacecraft vibration protection systems with the introduction of hydraulic, electromagnetic and mechanical functional elements in order to increase the efficiency of vibration isolation systems; active suppression of random vibrations in outer space during the operation of various spacecraft systems (due to disturbances from engines of orbit correction systems, etc.); using the adapter structure to perform the functions of a passive vibration protection system of the spacecraft.
|
Keywords: Resolution (Optics); Rockets, Safety; Shock (Mechanics); Smart structures; Satellite; Launch environment, Spacecraft; Vibration protection; Vehicles; Acoustics; Random vibration; Vibration; Control algorithms; Depth sounding; Flight |
1. Afanasiev V., Barsukov V., Gofin M., Zakharov V., Strelchenko N., Shalunov N. (1994). Experimental development of spacecraft. MAI Publ. House, 412 p. [in Russian]
2. Arenas J. P., Margasahayam R. N. (2006). Noise and vibration of spacecraft structures. Ingeniare Rev. Chil. Ing., 14, No 3, 251-264,
https://doi.org/10.4067/S0718-33052006000200009
3. Bezmozgiy I. M., Sofinsky A. N., Chernyagin A. G. (2014). Modeling in problems of vibration strength of structures of rocket and space technology. Space Equip. Technol., 3, № 6, 71-80 [in Russian]
4. Calvi A. (2011). Spacecraft Loads Analysis. An Overview. ESA / ESTEC, Noordwijk, the Netherlands. Presentation for the University of Liege Satellite Engineering Class. 14 p.
URL: https://docplayer.net/5135449-Spacecraft-structural-dynamics-loads-an-ov... (Last accessed: Mar. 24, 2023).
5. Caruntu D. I., Shove C. (2005). Overview of Payload Vibration Isolation Systems. Design Engineering. Parts A and B, 1149-1156.
https://doi.org/10.1115/IMECE2005-82138
6. Chen Y., Fang B., Yang T., Huang W. (2009). Study of Whole-spacecraft Vibration Isolators Based on Reliability Method. Chin. J. Aeronaut., 22, № 2, 153-159.
https://doi.org/10.1016/S1000-9361(08)60081-3
7. Cobb R. G., et al. (1999). Vibration isolation and suppression system for precision payloads in space. Smart Mater. Struct., 8, № 6, 798-812.
https://doi.org/10.1088/0964-1726/8/6/309
8. Dotson K. W., Sako B. H. (2007). Interaction Between Solid Rocket Motor Internal Flow and Structure During Flight. J. Propuls. Power, 23, № 1, 344-355.
https://doi.org/10.2514/1.20477
9. Fedor J. V. (1990). Active damping of spacecraft structural appendage vibrations. US4892273A.
https://doi.org/10.1121/1.400156
URL: https://patents.google.com/patent/US4892273A/en?oq=U.S.+Pat.+No.+4%2c892... (Last accessed: Mar. 24, 2023).
10. Fei H., Song E., Ma X., Jiang D. (2011). Research on Whole-spacecraft Vibration Isolation based on Predictive Control. Procedia Eng., 16, 467-476.
https://doi.org/10.1016/j.proeng.2011.08.1112
11. Gibbs W., Francis J., Spicer R., Schaeffer K., O'Connell M. (2009). Vibration Testing of the OCO Spacecraft on a Passive Vibration Isolation System. 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conf. (Palm Springs, California).
https://doi.org/10.2514/6.2009-2635
12. Gladkiy V. (1969). Dynamics of the aircraft design, 496 p. [in Russian]
13. Gordon S., Kern D. L. (2015). Benefits of Spacecraft Level Vibration Testing. Presented at the Aerospace Testing Seminar (Los Angeles, CA), 134.
URL: https://ntrs.nasa.gov/api/citations/20150020490/downloads/ 20150020490.pdf (Last accessed: Mar. 23, 2023).
14. Grishin D. (2013). Modern methods of vibration protection of structures: educational and methodological complex. RUDN, 111 [in Russian]
15. Haghshenas J. (2017). Vibration effects on remote sensing satellite images. Adv. Aircr. Spacecr. Sci., 4, № 5, 543-553.
doi: 10.12989/AAS.2017.4.5.543.
16. Hyde T. T., Davis L. P. (1998). Optimization of multiaxis passive isolation systems. Presented at the 5th Annual Int. Symp. On Smart Structures and Materials (San Diego, CA), 399-410.
https://doi.org/10.1117/12.310702
17. Igdalov I., Kuchma L., Poliakov N., Sheptun Y. D. (2004). Rocket as a controlled object. Dnepropetr.: ART-Press , 544 p.
18. Jafari B. (2018). Whole spacecraft vibration isolation system: A comparison of passive vs. semiactive vibration isolation designs, department of mechanical and industrial engineering (Concordia University, Montreal, Quebec, Canada).
URL: https://spectrum.library.concordia.ca/id/eprint/984635/1/Jafari_MASc_S20... (Last accessed: Mar. 24, 2023).
19. James G., Schultz K. (2014). Loads and Structural Dynamics Requirements for Spaceflight Hardware.
URL: https://ntrs.nasa.gov/citations/20110015359 (Last accessed: Mar. 24, 2023).
20. Kabe A., Kim M., Spiekermann C. (2003). Loads analysis for national security space missions. Crosslink, 20-25.
21. Kattakuri V., Panchal J. H. (2019). Spacecraft failure analysis from the perspective of design decision-making. Int. Design Engineering Tech. Conf. and Computers and Inform. in Engineering Conf., 59179, V001T02A068.
https://doi.org/10.1115/DETC2019-98420
22. Kern D. L., Gerace C. A. (2008). Implementation of a whole spacecraft isolation system for the OSTM/Jason 2 mission. 2008 IEEE Aerospace Conf., Big Sky, MT, USA, 1-8.
https://doi.org/10.1109/AERO.2008.4526538
23. Liu C., Jing X., Daley S., Li F. (2015). Recent advances in micro-vibration isolation. Mech. Syst. Signal Process, 56-57, 55-80.
https://doi.org/10.1016/j.ymssp.2014.10.007
24. Load Analyses of Spacecraft and Payloads. NASA Technical Standard. NASA-STD-5002A (Sep. 2019).
URL: https://standards.nasa.gov/sites/default/files/standards/NASA/A/0/nasa-s... (Last accessed: Mar. 24, 2023).
25. Maly J. R. (1996). FORTE spacecraft vibration mitigation. Final report (Los Alamos National Lab., Los Alamos, New Mexico).
https://doi.org/10.2172/484535
URL: https://inis.iaea.org/collection/NCLCollectionStore/_Public/28/075/28075... (Last accessed: Mar. 24, 2023).
26. Mars K. (2021). Johnson Space Center. Vibration testing.
URL: http://www.nasa.gov/johnson/exploration/technology (Last accessed: Mar. 24, 2023).
27. Newman J. S. (2001). Failure-Space - A systems engineering look at 50 space system failures. Acta Astronaut., 48, 517-527.
https://doi.org/10.1016/S0094-5765(01)00071-6
28. Nikolayev D. (2023). Exploring software solutions for active vibration control, protection, and isolation. EndurantDevs.
URL: https://www.endurantdev.com/article/exploring-software-solutions-for-act... (Last accessed: Mar. 24, 2023).
29. Park Y.-H., Kwon S.-C., Koo K.-R., Oh H.-U. (2021). High damping passive launch vibration isolation system using superelastic SMA with multilayered viscous lamina. Aerospace, 8, № 8, 201.
https://doi.org/10.3390/aerospace8080201
30. Pilipenko V. V., Nikolayev O. D., Dovgotko N. I., Pilipenko O. V., Dolgopolov S. I., Khoryak N. V. (2001). Theoretical assessment of the effectiveness of the passive system of vibration protection of spacecraft during longitudinal vibrations of the launch vehicle. Tech. Mech., 1, № 1, 5-12 [in Russian]
31. Pilipenko V. V., Pilipenko O. V. (2001). The vibration protection system for decreasing of the level of the dynamic loads (longitudinal vibration accelerations) of space vehicles under its putting into planned orbit. Рresented at the IAF 01-I.2.09, 52nd Int. Astronautical Congress (Toulouse, France, Oct. 2001).
32. PSLV - Rockets. URL: https://spaceflight101.com/spacerockets/pslv/ (Last accessed: Mar. 24, 2023).
33. Pylypenko O. V., Degtyarev M. A., Nikolayev O. D., Klimenko D. V., Dolgopolov S. I., Khoriak N. V., Bashliy I. D., Silkin L. A. (2020). Providing of POGO stability of the Cyclone-4M launch vehicle. Space Science and Technology, 26, № 4, 3-20.
https://doi.org/10.15407/knit2020.04.003
34. Pylypenko O. V., Prokopchuk O. O., Dolgopolov S. I., Nikolayev O. D., Khoriak N. V., Pysarenko V. Yu., Bashliy I. D., Polskykh S. V. (2021). Mathematical modelling of start-up transients at clustered propulsion system with POGO-suppressors for Cyclon-4M launch vehicle. Space Science and Technology, 27, № 6, 3-15.
https://doi.org/10.15407/knit2021.06.003
35. Pylypenko O. V., Nikolayev O. D., Bashliy I. D., Khoriak N. V., Dolgopolov S. I. (2020). State of the art in the theoretical study of the high-frequency stability of working processes in liquid-propellant rocket combustion chambers. Tech. Mech., 2, No 2, 5-21.
https://doi.org/10.15407/itm2020.02.005
36. Rabinovich B. I. (2000). New Ideas of the attitude Control Based on the Magnetohydrodynamic Phenomena. The Application to the Rotating Spacecraft. Presented at the Astro2000, 11CASI Conf. on Astronautics (Ottawa, Canada), 240.
37. Rittweger A., Beig H., Konstanzer P., Dacal R. B. (2005). Active payload adaptor for Ariane 5. Presented at the 56th Int. Astronautical Congress of the International Astronautical Federation (Fukuoka, Japan), 3654-3665.
https://doi.org/10.2514/6.IAC-05-C2.4.02
38. Robertson B., Stoneking E. (2003). Satellite GN and C Anomaly Trends.
URL: https://ntrs.nasa.gov/citations/20030025663 (Last accessed: May 25, 2023).
39. Serdyuk V. (2009). Designing Space Launch Vehicles: Textbook for higher educational institutions. Moscow: Mashinostroyenie, 504 p. [in Russian].
40. Sirlin S. W. (1987). Vibration isolation for spacecraft using the piezoelectric polymer PVF2. J. Acoust. Soc. Amer., 82, № S1, 13.
https://doi.org/10.1121/1.2024666
41. Souleille A., et al. (2018). A concept of active mount for space applications. CEAS Space J., 10, № 2, 157-165.
https://doi.org/10.1007/s12567-017-0180-6
42. Stavrinidis C., Klein M., Brunner O., Newerla A. (1996). Technical and programmatic constraints in dynamic verification of satellite mechanical systems. Acta Astronaut., 38, № 1, 25-31.
https://doi.org/10.1016/0094-5765(95)00122-0
43. Tang J., Cao D., Qin Z., Li H., Chen D. (2018). A VCM-based novel whole-spacecraft vibration isolation device: simulation and experiment. J. Vibroengineering, 20, № 2, 1035-1049.
https://doi.org/10.21595/jve.2017.18494
44. Tang J., Cao D., Ren F., Li H. (2018). Design and Experimental Study of a VCM-Based Whole-Spacecraft Vibration Isolation System. J. Aerosp. Eng., 31, № 5, 04018045.
https://doi.org/10.1061/(ASCE)AS.1943-5525.0000871
45. Tosney W. F., Cheng P. G. (2015). Space safety is no accident how the aerospace corporation promotes space safety. Space Safety is No Accident. Eds. T. Sgobba, I. Rongier. Cham: Springer Int. Publ., 101-108.
https://doi.org/10.1007/978-3-319-15982-9_11
46. Whitmore M., Boyer J., Holubec K. (2012). NASA-STD-3001. Space Flight Human-System Standard and the Human Integration Design Handbook. Presented at the Industrial and Systems Engineering Research Conference (Orlando, FL), 68.
URL: https://ntrs.nasa.gov/citations/20130000738 (Last accessed: Mar. 23, 2023).
47. Wilke P., Conor J., Patrick G., Sciulli D. (2000). Whole-Spacecraft Vibration Isolation for Broadband Attenuation. Presented at the IEEE Aerospace Conf. (BigSky, Montana).
https://doi.org/10.1109/AERO.2000.878442
URL: https://apps.dtic.mil/sti/pdfs/ADA451903.pdf (Last accessed: Mar. 24, 2023).
48. Wilke P. S., Johnson C. D., Fosness E. R. (1997). Payload isolation system for launch vehicles. Presented at the Smart Structures and Materials 1997: Passive Damping and Isolation, 3045, 20-30.
49. Xu K., Zhang Y., Zhu Y., Zang J., Chen L. (2020). Dynamics Analysis of Active Variable Stiffness Vibration Isolator for Whole-Spacecraft Systems Based on Nonlinear Output Frequency Response Functions. Acta Mech. Solida Sin., 33, № 6, 731-743.
https://doi.org/10.1007/s10338-020-00198-5
50. Zhang Y., Fang B., Chen Y. (2012). Vibration isolation performance evaluation of the discrete whole-spacecraft vibration isolation platform for flexible spacecrafts. Meccanica, 47, № 5, 1185-1195.
https://doi.org/10.1007/s11012-011-9503-4