Space infrastructure of the Internet of things. State and prospects of development

1Ilchenko, MYu., 1Narytnyk, TM, 2Prysiazhnyi, VI, 2Kapshtyk, SV, 3Matvienko, SA
1National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
2National Center of Space Facilities Control And Test, State Space Agency of Ukraine, Kyiv, Ukraine
3Scientific and Production Complex “Kurs”, Kyiv, Ukraine
Space Sci. & Technol. 2021, 27 ;(6):065-084
Publication Language: Ukrainian
We present an overview of possibilities for existing Satellite Communication Systems utilization to provide Internet of Things Services. It is shown that existing Satellite Communication Systems provide traffic transmission for IoT Systems with Cloud Architecture. The proposals are explicated on the possibility of using Fog and Edge Computing for Satellite Communication Systems. The implementation of  Fog and Edge computing in IoT Systems requires the modernization of the Low-Earth Orbit (LEO) and Geostationary Orbit (GEO) Satellite Communication Systems, and we show the ways of their enhancement. To increase the efficiency of IoT data processing and the reliability of IoT Data Storage, we propose to construct an Orbital Cloud Data Storage in GEO, which consists of several GEO Satellites - Cloud Computing Data Centers. Such a structure would require the development of methods of access providing to the Orbital Cloud Data Storage. For these purposes, our propositions include using GEO High-Throughput Satellites and satellites from the structure of LEO Satellite Communication. The issues of interaction between Orbital Cloud Data Storage and ground-based Cloud Data Processing and Storage Infrastructure are briefly considered. The orbital slots in GEO are proposed for the location of GEO Satellites - Cloud Computing Data Centers.

1. 5G sub 6 GHz technologies and trends. URL: (Last accessed: 15.07.2021).

2. Akan V., Yazgan E. Antennas for space applications: A Review. DOI: 10.5772/intechopen.93116. URL: (Last accessed: 15.07.2021).

3. Azure Space partners bring deep expertise to new venture. URL: (Last accessed: 15.07.2021).

4. Burleigh S. C., De Cola T., Morosi S., Jayousi S., Cianca E., Fuchs C. (2019). From connectivity to advanced internet services: A comprehensive review of small satellites communications and networks. Hindawi Wireless Communications and Mobile Computing, Vol. 2019, ID 6243505, 17. URL: (Last accessed: 15.07.2021).

5. Caleb H. Cloud Constellation selects LeoStella to build 10 data-storage satellites. (2019). URL: (Last accessed: 15.07.2021).

6. Chernyshev A. I., Demidenko I. O., Voruev A. V., Mikhnevich S. Yu. (2018). Programmable net-work access control with adaptive configuration of physical interfaces. Proc. F. Scorina Gomel State Univ., № 6 (111), 55-62.

7. China sends 'world's first 6G' test satellite into orbit. URL: (Last accessed: 15.07.2021).

8. Classification of geosynchronous objects. Date 28 May 2018 Issue 20 Rev 0. European Space Agency, European Space Operations Centre.

9. Edge Computing for Dummies®, Stratus Special Edition (2020). Hoboken, New Jersey: John Wiley & Sons, Inc.

10. EDRS (European Data Relay Satellite) Constellation / SpaceDataHighway. URL: (Last accessed: 15.07.2021).

11. Enciklopediya STARLINK. URL: (Last accessed: 15.07.2021).

12. Global IoT market to grow to $1.5trn annual revenue by 2030. (2020). URL: (Last accessed: 15.07.2021).

13. Handley M. Delay is not an option: Low latency routing in space. Univ. College London. URL: (Last accessed: 15.07.2021).

14. Ilchenco M. Ye., Kalinin V. I., Narytnik T. N., Cherepenin V. A. (2011). Wireless UWB ecologically friendly communications at 70 nanowatt radiation power. CriMiCo 2011-2011 21st International Crimean Conference: Microwave and Telecommunication Technology, Conf. Proc., ID 6068964, 355-356. URL: uri?eid=2-s2.0-81455143600&partnerID=40&md5=fbcc806eed6877cb29ff71b940370a6c (Last accessed: 15.07.2021).

15. Ilchenko M. Ye., Kuzmin S. Ye., Narytnik T. N., Fisun A. I., Belous O. I., Radzikhovsky V. N. (2013). Transceiver for 130-134 GHz band digital radio relay system. Telecommunications and Radio Engineering, 72 (17), 1623-1638. DOI: 10.1615/TelecomRadEng.v72.i17.70 (Last accessed: 15.07.2021).

16. Ilchenko M. Ye., Narytnik T. N., Didkovsky R. M. (2013). Clifford algebra in multipleaccess noise-signal communication systems. Telecommunications and Radio Engineering, 72 (18), 1651-1663. i18.20 (Last accessed: 15.07.2021).

17. Ilchenko M. Y., Narytnik T. N., Fisun A. I., Belous O. I. (2011). Terahertz range telecommunication systems Telecommunications and Radio Engineering, 70 (16), 1477-1487. DOI: 10.1615/TelecomRadEng.v70.i16.60 (Last accessed: 15.07.2021).

18. Ilchenko M. Ye., Narytnik T. N., Fisun A. I., Belous O. I. (2008). Conception of development of millimeter and submillimeter wave band radio telecommunication systems. Telecommunications and Radio Engineering, 67 (17), 1549-1564. DOI: 10.1615/TelecomRadEng.v67.i17.30 (Last accessed: 15.07.2021).

19. Ilchenko M., Narytnik T., Prisyazhny V., Kapshtyk S., Matvienko S. (2019). The solution of the problem of the delay determination in the information transmission and processing in the LEO satellite internet of things system. IEEE International Scientific-Practical Conference: Problems of Infocommunications Science and Technology, PIC S and T 2019: Proceedings. ID 9061350, 419-425. URL: 10.1109%2fPI CST47496.2019.9061350&partnerID=40&md5=7768787b80c0fd34e7417001cecc231b (Last accessed: 15.07.2021).

20. Ilchenko M., Narytnik T., Prisyazhny V., Kapshtyk S., Matvienko S. (2019). The solution of the problem of the delay determination in the information transmission and processing in the LEO satellite internet of things system. IEEE International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S&T), Kyiv, Ukraine, 2019/ IEEE Xplore Digital Library. Kyiv, 419-425. URL: (Last accessed: 15.07.2021).

21. Ilchenko M., Narytnik T., Prisyazhny V., Kapshtyk S., Matvienko S. (2020). The computing load balancing through the orbital computer network of the internet of things. Telecommunications and Radio Engineering, 79 (4), 343-352. DOI: 10.1615/TelecomRadEng.v79.i4.70

22. Ilchenko M., Narytnyk T., Prisyazhny V., Kapshtyk S., Matvienko S. (2021). Low-Earth orbital internet of things satellite system on the basis of distributed satellite architecture. Advances in Computer, Communication and Computational Sciences. Proceedings of IC4S 2019. Advances in Intelligent Systems and Computing. 1158. 301-314. Springer Nature Singapore Pte Ltd.

23. Ilchenko M. Ye., Narytnyk T. M., Radzikhovsky B. M., Kuzmin S. E., Lutchak O. V. (2015). Development of the transmitting and receiving channels for terahertz band relay systems. Telecommunications and Radio Engineering, 74 (11), 981-998. DOI: 10.1615/telecomradeng.v74.i11.30 (Last accessed: 15.07.2021).

24. Ilchenko M. E., Narytnіk T. N., Radzikhovsky V. N., Kuzmin S. E., Lutchak A. V. (2016). Design of transmitting and receiving radio-relay systems' radiopaths of terahertz range. Electrosvyaz, 2, 40-48. URL: asp?id=25594179 (Last accessed: 15.07.2021).

25. Maral G., Bousquet M. (2009). Satellite communications systems. 5th ed. John Wiley & Sons Ltd.

26. Minoli D. (2015). Innovations in satellite communications and satellite technology. The Industry Implications of DVB-S2X, High Throughput Satellites, Ultra HD, M2M, and IP. John Wiley & Sons, Inc.

27. Mohan N., Kangasharju J. Edge-fog cloud: A distributed cloud for internet of things computations. CIoT'16 1570310864 / DOI: 10.1109/CIOT.2016.7872914

28. Narytnik Т. N. (2014). Possibilities of using THz-band radio communication channels for super high-rate backhaul. Telecommunications and Radio Engineering, 73 (15), 1361-1371. URL: (Last accessed: 15.07.2021).

29. Narytnyk T. (2016). The ways of creation and use of telecommunication systems in the terahertz band transport distribution 5G mobile networks. Third International Scientific-Practical Conference Problems of Infocommunications be used on this conference proceedings. Consistency is required to ensure that Science and Technology (PIC S&T). 36-39.

30. Narytnyk Т. М. (2018). Principles of development of the terahertz band telecommunication system based on the technology of harmonic signal as the information carrier Telecommunications and Radio Engineering, 77 (16), 1423-1440. URL: (Last accessed: 15.07.2021).

31. Narytnyk Т. М., Lutchak О. V., Оsypchuk S. О., Uryvskyi L. О. (2015). Criteria and algorithms for shaping of the signal- code sequences on the basis of Wi-Fi technology at deployment of the terahertz band telecommunication system. Telecommunications and Radio Engineering, 75 (20), 1823-1839. URL:

(Last accessed: 15.07.2021).

32. Nguyen J. Overview of existing and future advanced satellite systems. DOI: 10.5772/intechopen.93227. URL: (Last accessed: 15.07.2021).

33. OneWeb non-geostationary satellite system (LEO): Attachment A. Technical Information to Supplement Schedule S, April 2016, SAT-LOI-20160428-00041 (Last accessed: 15.07.2021).

34. Operating in an EpicNG Environment. URL: (Last accessed: 15.07.2021).

35. Satellite 2020 - Lacuna Space explains LoRaWAN satellite success. URL: space-explains-lorawan-satellite-success.htm (Last accessed: 15.07.2021).

36. Satellite communications & broadcasting markets survey. Forecasts to 2025 / 23rd Edition. September 2016. 2016 Euroconsult.

37. Ye Chen, Wei Liu, Tian Wang, Qingyong Deng, Anfeng Liu, Houbing Song (2019). An adaptive retransmit mechanism for delay differentiated services in industrial WSNs. EURASIP J. Wireless Commun. and Networking. ID 258. URL: (Last accessed: 15.07.2021).