The study of the functional state of lipid rafts in the cytoplasmic membrane of Pisum Sativum seedlings under clinorotation

1Artemenko, OA
1M.G. Kholodny Institute of Botany of the National Academy of Science of Ukraine, Kyiv, Ukraine
Space Sci. & Technol. 2021, 27 ;(5):035-046
Publication Language: Ukrainian
The results of cytological, biochemical, and molecular biological studies clearly demonstrate the significant influence of microgravity on the main processes of plant development, revealing the mechanisms which underlie the reactions of plant responses to microgravity and ensure their adaptation to this factor. The key role in cell function belongs to the cytoplasmic membrane (CM). First of all, by its qualities and functions, it can play an important role in the adaptation of plants to microgravity. However, data about the effect of altered gravity on the physicochemical properties of CM are limited. Recently, much attention has been paid to the study of functional microdomains of the lipid bilayer that have a specific localization and content of lipids and proteins - lipid rafts. They are defined as a dynamic nanosized, sterol- and sphingolipid-enriched ordered association of specific proteins, in which a metastable resting state can be activated by a combination of specific lipid-lipid, protein-lipid, and protein-protein interactions. There are more and more experimental data that confirm their participation in such live processes as endocytosis, apoptosis, internalization of toxins, bacteria, viruses, etc., as well as their important role in the protective mechanisms of the cell under different stressors.
       In this work, a fluorescent marker of sterols – filipin and a fluorescent probe laurdan were used to confirm the presence of cholesterol and sphingolipid-enriched lipid ranges in CM. Our results regarding the increase in generalized polarization in the clinorotation conditions correlate with the data obtained in previous studies and indicate the sensitivity of the CM to a longer action of the clinorotation.
Keywords: cholesterol, clinorotation, cytoplasmic membrane, generalized polarization, lipid rafts, plants, sphingolipids
1. Allen J. A., Halverson-Tamboli R. A., Rasenick M. M. (2007). Lipid raft microdomains and neurotransmitter signaling. Nature reviews. Neuroscience. 8 (2), 128—140.
2. Beck J. G., Mathieu D., Loudet C., Buchoux S., Dufourc E. J. (2007). Plant sterols in “rafts”: a better way to regulate membrane thermal shocks. FASEB J., 21(8), 1714-23.
3. Brown D.A., London E. (2000). Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem., 275 (23), 17221-4.
4. Chen Y., Qin J., Cai J., Chen Z. W. (2009). Cold Induces Micro- and Nano-Scale Reorganization of Lipid Raft Markers at Mounds of T-Cell Membrane Fluctuations.
5. Dietrich C., Bagatolli L. A., Volovyk Z. N., Thompson N. L., Levi M., Jacobson K., Gratton E. (2001). Lipid rafts reconstituted in model membranes. Biophys. J., 80, 1417—1428.
6. Gaus K., Gratton E., Kable E. P., Jones A. S., Gelissen I., Kritharides L., Jessup W. (2003). Visualizing lipid structure and raft domains in living cells with two-photon microscopy. PNAS, 100, 15554—15559.
7. Gaus K., Le Lay S., Balasubramanian N., Schwartz M. A. (2006). Integrin-mediated adhesion regulates membrane order. J. Cell. Biol., 174(5), 725—734.
8. Hancock J.F. (2006). Lipid rafts: Contentious only from simplistic standpoints. Nat. Rev. Mol. Cell Biol., 7, 456—462.
9. Harmaza Y. V. (2008). Cholesterol and Zn-induced membrane changes. Science and innovation, 9, 40—42 [in Russian].
10. Harris F. M., Best K. B., Bell J. D. (2002). Use of laurdan fluorescence intensity and polarization to distinguish between changes in membrane fluidity and phospholipid order. Biochim. Biophys. Acta., 1565(1), 123—128. PMID: 12225860
11. Klymchenko A. S., Kreder R. (2014). Fluorescent Probes for Lipid Rafts: From Model Membranes to Living Cells. Chemistry & Biology, 21(1), 97—113.
12. Kordyum E. L. (2014). Plant cell gravisensitivity and adaptation to microgravity. J. Plant Biology,16 (l), 79—90.
13. Kordyum E. L., Klymenko О. М., Bulavin І. V., Zhupanov І. V., Vorobyova Т. V., Ruelland Е. (2018). Lipid rafts in plant cells are sensitive to the influence of simulated microgravity (clinorotation). Space Science and Technology, 24 (4), 48—58.
14. Lefebvre B., Furt F., Hartmann M. A., Michaelson L. V., Carde J. P., Sargueil-Boiron F., Rossignol M. (2007). Characterization of lipid rafts from Medicago truncatula root plasma membranes: a proteomic study reveals the presence of a raft-associated redox system. Plant Physiol., 144, 402—418.
15. Lingwood D., Simons K. (2010). Lipid rafts as a membrane-organizing principle.Science, 327 (5961), 46—50.
16. London E., Brown D. A. (2000). Insolubility of lipids in triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts). Biochim. Biophys. Acta, 1508 (1-2), 182-95.
17. M’Baye G., Mély Y., Duportail G., Klymchenko A. S. (2008). Liquid ordered and gel phases of lipid bilayers: fluorescent probes reveal close fluidity but different hydration. Biophys. J., 95, 1217—1225.
18. Mongrand S., Morel J., Laroche J., Claverol S., Carde J. P., Hartmann M. A., Bonneu M., Simon-Plas F., Lessire R., Bessoule J. J. (2004). Lipid rafts in higher plant cells. The J. Biolog. Chemistry, 279 (35), 36277—36286.
19. Nickels J. D., Smith M. D., Alsop R. J., Himbert S., Yahya A., Cordner D., Zolnierczuk P., Stanley C. B., Katsaras J., Cheng X., Rheinstädter M. C. (2019). Lipid Rafts: Buffers of Cell Membrane Physical Properties. J. Phys. Chem. B., 123(9), 2050—2056. 10.1021/acs.jpcb.8b12126.
20. Owen D. M., Rentero C., Magenau A., Abu-Siniyeh A., Gaus K. (2011). Quantitative imaging of membrane lipid order in cells and organisms. Nat. Protoc., 7(1), 24—35.
21. Parasassi T., De Stasio G., d’Ubaldo A., Gratton E. (1990). Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence. Biophys. J., 57(6), 1179—1186.
22. Parasassi T., Gratton E., Yu W., Wilson P., Levi M. (1997). Two photon fluorescence microscopy of LAURDAN generalized polarization domains in model and natural membranes. Biophys. J., 72, 2413—2429.
23. Parasassi T., Krasnowska E. K., Bagatolli L., Gratton E. (1998). Laurdan and prodan as polarity-sensitive fluorescent membrane probes. J. Fluoresc, 8 (4), 365—373.
24. Risselada H. J., Marrink S. J. (2008). The molecular face of lipid rafts in model membranes.PNAS, 105 (45), 17367—17372.
25. Sanchez S. A., Tricerri M. A., Gunther G., Gratton E. (2007). Laurdan generalized polarization: from cuvette to microscope. Modern Research and Educational Topics in Microscopy (Formatex). 2, 1007—1014.
26. Sanchez S. A., Tricerri M. A., Gratton E. (2012). Laurdan GP fluctuations. PNAS, 109 (19), 7314—7319.
27. Sezgin E., Levental I., Mayor S., Eggeling C. (2017). The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol., 18, 361—374.
28. Shevyreva Т. А. (2008). Vesicular transport of PIP-aquaporins in a plant cell under osmotic stress. PhD dissertation abstract. Moscow: IPP [in Russian].
29. Simons K., Gerl M. (2010). Revitalizing membrane rafts: new tools and insights. Nat. Rev. Mol. Cell Biol., 11, 688—699.
30. Vesnina L. (2013). Lipid rafts: the role in the regulation of the functional state of cell membranes. Actual problems of modern medicine, 13 (2), 5—10 [in Russian].
31. Wheeler G., Tyler K. M. (2011). Widefield microscopy for live imaging of lipid domains and membrane dynamics. Biochim. Biophys. Acta, 1808 (3), 634—641.
32. Zhao X., Zhang X., Qu Y., Li R., Baluška F., Wan Y. (2015). Mapping of membrane lipid order in root apex zones of arabidopsis thaliana. Front. Plant Sci., 6, 1151.