Geospace storm effects on August 5—6, 2019

1Luo, Y, 2Guo, Q, 3Zheng, Y, 1Garmash, KP, 1Chernogor, LF, 1Shulga, SN
1V.N. Karazin National University of Kharkiv, Kharkiv, Ukraine
2Harbin Engineering University, Heilongjiang Province, China
3Qingdao University, Shandong, China
Space Sci. & Technol. 2021, 27 ;(2):45-69
https://doi.org/10.15407/knit2021.02.045
Publication Language: Ukrainian
Abstract: 
Geospace storms are the synergistically interacting magnetic storms, ionospheric storms, atmospheric storms, and the storms in an electric field of magnetospheric, ionospheric, and atmospheric origins. Geospace storms are very diverse, and no two of them behave exactly the same. Therefore, studying the effects of each new storm becomes an urgent task for us. Such research will reveal both the general laws and individual characteristics of storm processes.
       The purpose of this paper is to present general information about the geospace storm, the results of the analysis of features of magnetic and ionospheric storms.
       To analyze the magnetic environment, we used the measurement results of magnetic field fluctuations in the range from 1 s to 1000 s, performed at the Magnetometric Observatory of V. N. Karazin Kharkiv National University, and variations of three components of the geomagnetic field, performed at the Low-frequency observatory of the IRA NASU. We analyzed the ionospheric environment using multi-frequency multi-path measurements performed at Harbin Engineering University (China) and also the data of ionosonde.  The main results of the work are as follows. An increase in the main parameters of the solar wind on August 5, 2019, led to a geospace storm, which was mainly observed on August 5 and 6, 2019. The main phase of the magnetic storm took place on August 5, 2019, from 06:00 a.m. to 08:30 a.m. The recovery phase lasted at no less than 4 days. The magnetic storm shows significant variations of all components of the geomagnetic field, and there is an increase by order of magnitude of the oscillations’ level of the geomagnetic field in the range from 400 s to 950 s. During the ionospheric storm, significant disturbances occurred in the F region of the ionosphere. The E-region of the ionosphere remained weakly perturbed. The ionospheric storm has severely affected the Doppler spectra of radio waves in the 5 – 10 MHz frequency range. The Doppler spectra are significantly broadened, and the Doppler frequency shift and its quasi-periodic change with a period of 20–40 minutes and a duration of 120–240 minutes have taken place. The quasi-periodic variations of the Doppler frequency shift are due to quasi-periodic variations in the electron concentration, and the amplitude of their relative perturbations varied from 3% to 16%. On one of these paths, the amplitude of the Doppler frequency shift reached 0.7 Hz. And in this case, the amplitude of the relative perturbations of the electron concentration could reach 80 - 90%. In addition, the ionospheric storm little affected the signal amplitude on most radio paths.
Keywords: Doppler shift, Doppler spectra, electron content, geospace storm, ionosphere oblique-incidence system, ionospheric storm, magnetic storm, quasi-periodic variations
References: 
1. Vladimirsky B. M., Temuryants N. A., Martinuk V. S. (2004). Cosmic Weather and our life. Fryazino [in Russian].
2. Miroshnichenko L. I. (2011). The Sun — Earth Problem: Modern Concepts and Physical Mechanisms. Space Sci. and Technology, 17(1), 17—22 [in Russian].
3. Miroshnichenko L. I. (2011). Physics of the Sun and solar-terrestrial relations. Moscow: Universitetskaya Kniga Publ. [in Russian].
4. Chernogor L. F. (2008). Advanced methods of spectral analysis of quasiperiodic wave-like processes in the ionosphere: Specific features and experimental results. Geomagnetism and Aeronomy, 48(5), 652—673.
5. Chernogor L. F., Garmash K. P., Podnos V. A., Tyrnov O. F. (2013). The V. N. Karazin Kharkiv National University Radio physical Observatory — the tool for ionosphere monitoring in space experiments. Space Project “Ionosat-Micro”. Eds. S. A. Zasukha, O. P. Fedorov. Kyiv: Akademperiodika Publ., 160—182 [in Russian].
6. Chernogor L. F., Garmash K. P., Guo Qiang, Zheng Yu, Podnos V. А., Rozumenko V. T., Tyrnov О. F., Tsymbal А. М. (2018). The coherent multi-frequency multipath radio diagnostic system for radiophysical monitoring of dynamic processes at ionosphere. Bull. V. N. Karazin Kharkiv national university. Radio Physics and Electronics, 28, 88—93 [in Russian].
7. Chernogor L. F., Domnin I. F. (2014). Physics of geocosmic storms. Kharkiv: V. N. Karazin Kharkiv Nat. Univ. Publ. [in Russian].
8. Appleton E., Ingram L. (1935). Magnetic storms and upper atmospheric ionization. Nature, 136, 548—549.
9. Benestad R. E. ( 2002). Solar activity and Earth’s climate. Springer-Praxis.
10. Blagoveshchensky D., Sergeeva M. (2019). Impact of geomagnetic storm of September 7—8, 2017 on ionosphere and HF propagation: A multi-instrument study. Adv. in Space Res., 63(1), 239—256. URL http://www.sciencedirect.com/science/article/pii/S0273117718305787 (Last accessed 23.12.2019).
11. Blanch E., Altadill D., Boška J., Burešová D., Hernández-Pajares M. (2005). November 2003 event: Effects on the Earth’s ionosphere observed from ground-based ionosonde and GPS data. Ann. Geophys., 23, 3027—3034.
12. Borries C., Berdermann J., Jakowski N., Wilken V. (2018). Ionospheric storms — A challenge for empirical forecast of the total electron content. J. Geophys. Res.: Space Phys., 120(4), 3175—3186. URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015JA020988 (Last accessed 23.12.2019).
13. Bothmer V., Daglis I. (2006). Space Weather: Physics and Effects. New York: Springer-Verlag.
14. Buonsanto M. (1999). Ionospheric storms — A review. Space Sci. Revs., 88(3-4), 563—601.
15. Carlowicz M. J., Lopez R. E. (2002). Storms from the Sun. Washington D C: Joseph Henry Press.
16. Chernogor L. F., Garmash K. P., Guo Q., Rozumenko V. T., Zheng Y. (2019). Physical Effects of the Severe Ionospheric Storm of 26 August 2018. Fifth UK—Ukraine—Spain Meeting on Solar Physics and Space Science. Programme, Abstracts, information, 33.
17. Chernogor L. F., Garmash K. P., Guo Q., Rozumenko V. T., Zheng Y. (2019). Physical Processes Operating in the Ionosphere after the Earthquake of Richter Magnitude 5.9 in Japan on July 7, 2018. Astronomy and Space Physics in the Kyiv University. Book of Abstracts. International Conference. May 28 — May 31, 2019, 87—88.
18. Chernogor L. F., Garmash K. P., Guo Q., Rozumenko V. T., Zheng Y. (2019). Effects of the Severe Ionospheric Storm of 26 August 2018. Astronomy and Space Physics in the Kyiv University. Book of Abstracts. International Conference. May 28 —May 31, 2019, 88—90.
19. Freeman J. W. (2001). Storms in Space. London, New York: Cambridge Univ. Press.
20. Fuller-Rowell T. J., Codrescu M. V., Roble R. G., Rich-mond A. D. (1997). How does the thermosphere and ionosphere react to a geomagnetic storm? Magnetic Storms. Washington, 203—226 (AGU Monograph., vol. 98).
21. Goodman J. M. (2005). Space Weather and Telecommunications. Springer.
22. Guo Q., Chernogor L. F., Garmash K. P., Rozumenko V. T., Zheng Y. (2019). Dynamical processes in the ionosphere following the moderate earthquake in Japan on 7 July 2018. J. Atmos. Solar-Terr. Phys., 186, 88—103.
23. Guo Q., Chernogor L. F., Garmash K. P., Rozumenko V. T., Zheng Y. (2020). Radio Monitoring of Dynamic Processes in the Ionosphere over China during the Partial Solar Eclipse of 11 August 2018. Radio Sci., 55(2),
24. Guo Q., Zheng Y., Chernogor L. F., Garmash K. P., Rozumenko V. T. (2019). Passive HF Doppler Radar for Oblique-Incidence Ionospheric Sounding. IEEE 2nd Ukraine Conference on Electrical and Computer Engineering. Lviv, Ukraine, July 2—6, 2019, 88—93.
25. Hafstad L., Tuve M. (1929). Further studies of the Kennelly-Heaviside layer by the echo-method. Proc. the Institute of Radio Engineers, 17(9), 1513—1521.
26. Hajkowicz L. (1991). Auroral electrojet effect on the global occurrence pattern of large scale travelling ionospheric disturbances. Planet. and Space Sci., 39(8), 1189—1196.
27. Lathuillère C., Menvielle M., Lilensten J., Amari T., Radicella S. M. (2002). From the Sun’s atmosphere to the Earth’s atmosphere: an overview of scientific models available for space weather developments. Ann. Geophys., 20(7), 1081—1104.
28. Lei J., Burns A.G., Tsugawa T., Wang W., Solomon S.C., Wiltberger M. (2008). Observations and simulations of quasiperiodic ionospheric oscillations and large-scale traveling ionospheric disturbances during the December 2006 geomagnetic storm. J. Geophys. Res., 113(A6), A06310.
29. Lilensten J., Bornarel J. (2005). Space Weather, Environment and Societies. Berlin/New York: Springer.
30. Liu J., Wang W., Burns A., Yue X., Zhang S., Zhang Y., Huang C. (2016). Profiles of ionospheric storm-enhanced density during the 17 March 2015 great storm. J. Geophys. Res., 121(1), 727—744.
31. Lyons L. R., Nishimura Y., Zhang S.-R., Coster A. J., Bhatt A., Kendall E., Deng Y. (2019). Identification of auroral zone activity driving largescale traveling ionospheric disturbances. J. Geophys. Res.: Space Phys., 124(1), 700—714.
32. Matsushita S. (1959). A study of the morphology of ionospheric storms. J. Geophys. Res., 64(4), 305—321.
33. Mendillo M. (2006). Storms in the ionosphere: patterns and processes for total electron content. Rev. Geophys., 44(4), 
34. Mosna Z., Kouba D., Knizova P. K., Buresova D., Chum J., Sindelarova T., Urbar J., Boska J., Saxonbergova-Jankovicova D. (2020). Ionospheric storm of September 2017 observed at ionospheric station Pruhonice, the Czech Republic. Adv. Space Res., 65(1), 115—128.
35. Pirog O.M., Polekh N.M., Zherebtsov G.A., Smirnov V.F., Shi J., Wang X. (2006). Seasonal variations of the ionospheric effects of geomagnetic storms at different latitudes of East Asia. Adv. Space Res., 37(5), 1075—1080.
36. Polekh N., Zolotukhina N., Kurkin V., Zherebtsov G., Shi J., Wang G., Wang Z. (2017). Dynamics of ionospheric disturbances during the 17—19 March 2015 geomagnetic storm over East Asia. Adv. Space Res., 60(11), 2464—2476.
37. Prölss G. W. (1995). Ionospheric F-region storms. Handbook of atmospheric electrodynamics. 2, 195—248.
38. Prölss G. W. (2006). Ionospheric F-region Storms: Unsolved Problems. Characterising the Ionosphere: Meeting Proceedings RTO-MP-IST-056, Paper 10. Neuilly-sur-Seine, France: RTO, 2006, 10-1—10-20. URL: http://www.rto.nato.int/abstracts.asp (Last accessed 23.12.2019).
39. Shpynev B. G., Zolotukhina N. A., Polekh N. M., Ratovsky K. G., Chernigovskaya M. A., Belinskaya A. Yu., Stepanov A. E., Bychkov V. V., Grigorieva S. A., Panchenko V. A., Korenkova N. A., Mielich J. (2018). The ionosphere response to severe geomagnetic storm in March 2015 on the base of the data from Eurasian high-middle latitudes ionosonde chain. J. Atmos. Solar-Terr. Phys., 180, 93—105. URL: http://www.sciencedirect.com/science/article/pii/S136468261730617X (Last accessed 23.12.2019).
40. Song P., Singer H., Siscoe G. (Eds). (2001). Space Weather (Geophysical Monograph). Union, Washington, D. C.
41. Vijaya Lekshmi D., Balan N., Tulasi Ram S., Liu J. Y. (2011). Statistics of geomagnetic storms and ionospheric storms at low and mid latitudes in two solar cycles. J. Geophys. Res., 116, A11328.
42. Yakovchouk O. S., Mursula K., Holappa L., Veselovsky I. S., Karinen A. (2012). Average properties of geomagnetic storms in 1932—2009. J. Geophys. Res., 117(A3).
43. Yamauchi M., Sergienko T., Enell C.-F., Schillings A., Slapak R., Johnsen M. G., Tjulin A., Nilsson H. (2018). Ionospheric response observed by EISCAT during the 6—8 September 2017 space weather event: Overview. Space Weather, 16(9), 1437—1450. URL https://agupubs.onlinelibrary.wiley.com /doi/abs/10.1029/ 2018SW001937 (Last accessed 23.12.2019).
44. Zolotukhina N. A., Kurkin V. I., Polekh N. M. (2018). Ionospheric disturbances over East Asia during intense December magnetic storms of 2006 and 2015: similarities and differences. Solar-Terr. Phys., 4(3), 28—42.