1Tyrnov, OF, 1Fedorenko, Yu.P, 1Dorohov, VL
1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
Space Sci.&Technol. 2016, 22 ;(5):03-70
Section: Space and Atmospheric Physics
Publication Language: Russian
We describe a semi-empirical model to determine parameters of traveling ionospheric disturbances (TIDs), which has been developed by authors. The model deals with spatial and temporal dynamics of TIDs. Large- and medium-scale (LS and MS) TIDs are presented in the model as different stages of a single wave process. The model is based on the assumption that the TIDs are induced by propagation of acoustic gravity waves (AGW), and that all parts of the temporal and spatial train of atmospheric pressure waves propagate from a local source with constant horizontal velocity and relative amplitude. The value of the velocity is determined by the delay of the any TID train part with respect to the perturbation onset. Model validation was conducted using perturbations generated by the following sources: ground and high-altitude nuclear explosions, volcanic eruptions-explosions, earthquake, and precipitation of energetic protons into the magnetosphere cusp of the northern hemisphere. The verification of the model with the data from the published sources has resulted that the prediction error of the spatial and time periods of the TIDs does not exceed 12 %.
Keywords: acoustic-gravity waves, earthquake, energetic proton precipitation, magnetospheric cusp, nuclear explosion, semi-empirical model, train disturbances of atmospheric pressure, traveling ionospheric disturbances, volcano eruption
1. Adushkin V. V., and Gorelyi K. I. The response of the ionospheric F-region to atmospheric nuclear explosions. Dynamic Processes in Geospheres, Geophysics of Strong Disturbances. Collected Scientific Transactions, Moscow, 239–248 (1994) [in Russian].
2. Afraimovich E. L., Voyenkov S. V., Ratovsky K. G., and Tatarinov P. V. GPS-detection of the single internal gravitational waves generated during powerful magnetic storms.Proc. 21th All-Russia Sci. Conference on Radiowave Propagation, Ioshkar Ola, 1, 124–128 (2005) [in Russian].
3. Halperin Yu. I., Sivtseva L. D., Filippov V. M., and Khalipov V. L. The sub-auroral upper ionosphere, 191 p. (Nauka, Novosybyrsk, 1990) [in Russian].
4. Gossard E. E., and Hooke W. H. Waves in the Atmosphere, 532 p. (Mir, Moscow, 1978) [in Russian], Transl. from Eng., 456 p. (Elsevier, Amsterdam, Netherlands, 1975).
5. Danilov A. D., Kazimirovskii E. J., Vergasova G. V., and Khachikian G. J. Meteorological effects in the ionosphere, 272 p. (Gidrometeoizdat, Leningrad, 1987) [in Russian].
6. Deminov M. G., Karpachev A. T., Afonin V. V., and Shmilauer J. Change of a position of the main ionospheric trough depending on a longitude and geomagnetic activity.Geomagn. Aeron., 32 (5), 185–188 (1992) [in Russian].
7. Dorohov V. L., Somov V. G., Fedorenko V. N., and Fedorenko Yu. P. Diagnostics of Medium Scale Traveling Ionospheric Disturbances Using Radio Sounding of the Ionosphere by Signals from Low-Orbiting Navigation Satellites. Visn. Kharkiv Karazin Nat. Univ., Ser.: Radiofiz. Elektron., 2 (646), 224–229 (2004) [in Russian].
8. Kunitsyn W. Е., Suraev S. N., and Akhmedov R. R. Modeling propagation of acoustic gravity waves in the atmosphere for different surface sources. Vestn. Mosk. Univ., Sert. 3. Fiz. Astron., 2, 59–63 (2007) [in Russian].
9. Taran V. I., Pod’yachii Yu. I, Golovin V. I., Vashchenko V. I., and Arkad’ev I. D. Traveling Ionospheric Disturbances Detected Using the Incoherent Scatter Method. Ionos. Issled., 27, 102–110 (1979) [in Russian].
10. Taran V. I., Pod’yachii Yu. I., Smirnov A. N., and Gerstein L. J. Disturbances of the ionosphere after a ground level burst on supervision by a method of incoherent scatter. Izvest. akadem. nauk SSSR, Phisica Zemly, 11, 75–79 (1985) [in Russian].
11. Tyrnov O. F., Fedorenko Yu. P., and Chernogor L. F. Studying wave-like disturbances of electron density using radio sounding of the ionosphere by coherent signals of navigation satellites. Usp. Sovrem. Radioelektron., 1, 36–80 (2005) [in Russian].
12. Fedorenko V. N., Fedorenko Yu. P., and Shagimuratov I. I. Results of the ionosphere study by means of diversity reception of radiosignals of low-orbiting navigation satellites. Geomagn. Aeron., 37 (3), 346–349 (1997).
13. Fedorenko Yu. P., Tyrnov O. F., and Fedorenko V. N. Parameters of empirical model of traveling ionospheric disturbances. Elektromagnitnye volny i elektronnye sistemy, 13 (1), 21–46 (2008) [in Russian].
14. Fedorenko Yu. P., Tyrnov O. F., and Fedorenko V. N. Parameters of traveling ionospheric disturbances estimated from satellite beacon observations in low Earth orbit. Geomagn. Aeron., 50 (4), 489–503 (2010).
15. Fedorenko Yu. P., Fedorenko V. N., and Dorohov V. L. Front inclination in a vertical plane of Medium-Scale Traveling Ionospheric Disturbances and an effective thickness of a layer of their detection. Visn. Kharkiv Karazin Nat. Univ., Ser.: Radiofiz. Elektron., 17 (927), 109–120 (2010) [in Russian].
16. Fedorenko Yu. P., Fedorenko V. N., and Dorohov V. L. Diagnostics of parameters of large-scale Traveling Ionospheric Disturbances with the help radioscopy ionosphere by signals low-orbital navigating satellites. Visn. Kharkiv Karazin Nat. Univ., Ser.: Radiofiz. Elektron., 20 (1010), 97–112 (2012) [in Russian].
17. Fedorenko Yu. P., Fedorenko V. N., and Lysenko V. N. Parameters of the medium-scale traveling ionospheric disturbances model deduced from measurements. Geomagn. Aeron., 51 (1), 88–104 (2011).
18. Shashunkina V. M. Ionospheric effect of the sudden beginning of a magnetic storm on July, 15th, 1959. Geomagn. Aeron., 6 (1), 146–149 (1966) [in Russian].
19. Shashunkina V. M. Variations of ionospheric parameters during effect SC depending on solar and magnetic activity according to the Lindau-data. Geomagn. Aeron., 8 (2), 352–354 (1968) [in Russian].
20. Shashunkina V. M. Study of planetary ionospheric effect of the sudden beginning of a magnetic storm. Ionosf. Issled., Moscow, Nauka, 16, 91–96 (1968) [in Russian].
21. Shashunkina V. M. Results of study of ionospheric effect of the sudden beginning of a magnetic storm, Ionosf. Issled., Moscow, Nauka, 20, 154–165 (1972) [in Russian].
22. Yakovets A. F., Vodyannikov V. V., Gordienko G. I., et al. The response of a night middle-latitude ionosphere to passage of an atmospheric gravitational wave. Geomagn.Aeron., 48 (4), 534–541 (2008) [in Russian].
23. Albee P. R., and Kanellakos D. P. A spatial model of the F-region ionospheric traveling disturbance following a low-altitude nuclear explosion. J. Geophys. Res., 73 (3), 1039–1053 (1968).
24. Beynon W. J. G. Evidence of Horizontal Motion in Region F2 Ionization. Nature, 162 (4127), 887 (1948).
25. Bowman G. G. Some effects of nuclear explosions on the ionosphere. Aust. J. Phys., 15 (3), 405–419 (1962).
26. Breitling W. J., and Kupferman R. A. Traveling Ionospheric Disturbances Associated with Nuclear Detonations. J. Geophys. Res., 72 (1), 307–315 (1967).
27. Bristow W. A., Greenwald R. A., and Samson J. C. Identification of high-latitude acoustic gravity wave sources using the Goose Bay HF radar. J. Geophys. Res., 99 (A1), 319–331 (1994).
28. Bullough R. K., and Caudrey P. J. Solitons, 389 p. (Heidelbern, Berlin, Springer-Verlag, New York, 1980).
29. Cole J. D., and Greifinger C. Acoustic-gravity waves from an energy source at the ground in the isothermal atmosphere. J. Geophys. Res., 74 (14), 3693–3703 (1969).
30. Evans J. V., Holt J. M., and Wand R. H. A Differential Doppler Study of Traveling Ionospheric Disturbances from Millstone Hill. Radio Sci., 18 (3), 435–451 (1983).
31. Fedorenko Yu. P., Tyrnov O. F., Fedorenko V. N., Dorohov V. L. Model of Traveling Ionospheric Disturbances. J. Space Weather Space Clim., 3 (A30), 1–28 (2013).
32. Francis S. H. A Theory of Medium-Scale Traveling Ionospheric Disturbances. J. Geophys. Res., 79 (34), 5245–5260 (1974).
33. Francis S. H. Global propagation of atmospheric gravity waves: A review. J. Atmos. and Terr. Phys., 37 (6–7), 1011–1054 (1975).
34. Hargreaves J. K. The solar-terrestrial environment, 420 p. (Cambridge University Press, 1992).
35. Heisler L. H. Anomalies in ionosonde records due to traveling ionospheric disturbances. Aust. J. Phis., 11, 79–90 (1958).
36. Hines C. O. Internal atmospheric gravity waves at ionospheric heights. Can. J. Phis., 38, 1441–1481 (1960).
37. Hocke K., and Schlegel K. A Review of Atmospheric Gravity Waves and Traveling Ionospheric Disturbances: 1982–1995. Ann. Geophys., 14, 917–940 (1996).
38. Hunsucker R. D. Atmospheric Gravity Waves Generated in the High-Latitude Ionosphere: A Review. Revs Geophys. and Space Phys., 20 (2), 293–315 (1982).
39. Igarashi K., Kainuma S., Nishimuta I., Okamoto S., Kuroiwa H., Tanaka T., and Ogawa T. Ionospheric and atmospheric disturbances around Japan caused by the eruption of Mount Pinatubo on 15 June 1991. J. Atmos. and Terr. Phys., 56 (9), 1227–1234 (1994).
40. Iyer K. N. Effect of Traveling Ionospheric Disturbances on HF Phase–Path Measurements. Indian J. Radio Space Phys., 12, 47–49 (1983).
41. Kanellakos D. P. Response of the ionosphere to the passage of acoustic-gravity waves generated by low-altitude nuclear explosions. J. Geophys. Res., 72 (17), 4559–4576 (1967).
42. Karpachev A. T., Beloff N., Carozzi T. D., Denisenko P. F., Karhunem T. J. T., Lester M. Detection of Large Scale TIDs associated with the Dayside Cusp Using SuperDARN Data. J. Atmos. and Solar-Terr. Phys., 72 (9–10), 653–661 (2010).
43. Köhnlein W, Raitt W. J. Position of the mid-latitude trough in the topside ionosphere as deduced from ESPO 4 observations. Planet. Space Sci., 25, 600–602 (1977).
44. Kotake N., Otsuka Y., Ogawa T., Tsugawa T., Saito A. Statistical study of medium-scale traveling ionospheric disturbances observed with the GPS networks in Southern California. Earth Planets Space, 59, 95–102 (2007).
45. Liu C. H., and Yeh K. C. Exciting of Acoustic-Gravity Waves in an Isothermal Atmosphere. Tellus., 23, 150–163 (1971).
46. Lomax J. B., Donald L., and Nielson D. L. Observation of Acoustic Gravity Wave Effects Showing Geomagnetic Field Dependence. J. Atmos. and Terr. Phys., 30 (5), 1033–1050 (1968).
47. Lonngren K., and Scott A. C. Soliton in Actions, xiii, 300 p. (Academic Press, New York–San Francisco–London, 1978).
48. Martyn D. F. Cellurar atmospheric waves in the ionosphere and troposphere. Proc. Roy. Soc., A201, 216–234 (1950).
49. Munro G. H. Short-Period Changes in the F Region of the Ionosphere. Nature, 162, 886–887 (1948).
50. Obayashi T. Widespread ionospheric disturbances due to nuclear explosions during October 1961. Nature, 196 (4849), 24–27 (1962).
51. Ogawa T., Igarashi K., Aikyo K., and Maeno H. Satellite Observation of Medium-Scale Traveling Ionospheric Disturbances over Syowa Station. Proc. NIPR Symposium Upper Atmosphere. 1, 192–198 (1988).
52. Otsuka Y., Suzuki K., Nakagawa S., Nishioka1 M., Shiokawa1 K., Tsugawa T. GPS observations of mediumscale traveling ionospheric disturbances over Europe Ann. Geophys., 31, 163–172 (2013).
53. Roberts D. H., Klobuchar J. A., Fougere P. F., and Hendrickson D. H. A large-amplitude traveling ionospheric disturbance produced by the May 18, 1980, explosion of Mount St. Helens. J. Geophys. Res., 87 (A8), 6291–6301 (1982).
54. Roberts D. H., Rogers A. E. E., Allen B. R., Bennett C. L., Bukker B. F., Greenfield P. E., Lawrence C. R., and Clark T. A. Radio interferometric detection of a traveling ionospheric disturbance excited by Explosion of Mount St. Helens. J. Geophys. Res., 87 (A8), 6302–6306 (1982).
55. Row R. V. Acoustic-gravity waves in the upper atmosphere due to a nuclear detonation and an earthquake. J. Geophys. Res., 72 (5), 1599–1610 (1967).
56. RTO Technical report TR-IST-051. Characterising the Ionosphere. Final Report of Task Group IST-051. – PubО. Ф. Тырнов, Ю. П. Федоренко, В. Л. Дорохов lished January 2009. (Hawlitschka Stefan). 1.3.8 (Prikryl Paul).
57. Senior A., Kosch M. J., Yeoman T. K., Rietveld M. T., and McCrea I. W. Effects of High Latitude Atmospheric Gravity Wave Disturbances on Artificial HF Radar Backscatter.Ann. Geophys., 24, 2347–2361 (2006).
58. Song Q., Ding F., Wan W. X., Liu L. B., Ning B. Q. Monitoring nighttime medium-scale traveling ionospheric disturbances using the GPS network over North America. J. Geophys., 54 (2), 162–168 (2011).
59. Tsugawa T., Kotake N., Otsuka Y., Saito A. Mediumscale traveling ionospheric disturbances observed by GPS receiver network in Japan: a short review. GPS Solutions, 11 (2), 139–144 (2007).
60. Tsugawa T., Otsuka Y., Coster A. J., Saito A. New Characteristics of Medium-Scale Traveling Ionospheric Disturbances Detected with Dense Wide-Coverage TEC Maps over North America. Geophys.Res. Lett., 34, L22101 (2007).
61. Vadas S. L., Crowley G. Sources of the traveling ionospheric disturbances observed by the ionospheric TIDDBIT sounder near Wallops Island on 30 October 2007. J. Geophys. Res., 115 (A07324), 1–24 (2010).
62. Vlasov A., Kauristie K., van de Kamp M., Luntama J.-P., and Pogoreltsev A. A study of Traveling Ionospheric Disturbances and Atmospheric Gravity Waves using EISCAT Svalbard Radar IPY-data. Ann. Geophys., 29, 2101–2116 (2011).
63. Wand R. H., Mendillo M. Incoherent scatter observations of an artificially modified ionosphere. J. Geophys. Res., 89 (A1), 203–215 (1984).
64. Welles H. W., Watts J. M., and George D. E. Detection of Rapidly Moving Ionospheric Clouds. Phys. Rew., 69, 540–541 (1946).
65. Wexler H., Hass W. A. Global Atmospheric pressure effects of the October 30, 1961, explosion. J. Geophys. Res., 67 (10), 3875–3887 (1962).
66. Yeh K. C., Liu C. H. Acoustic-gravity waves in the upper atmosphere. Revs Geophys. and Space Phys., 12 (2), 193–216 (1974).