Estimation of the oxidative stress in moss Pohlia nutans (Hedw.) Lindb. depending on the influence of gravity

1Kyyak, NYa., 1Khorkavtsiv, Ya.D
1Institute of Ecology of the Carpathians of the National Academy of Sciences of Ukraine, L’viv, Ukraine
Space Sci.&Technol. 2016, 22 ;(4):58-66
https://doi.org/10.15407/knit2016.04.058
Section: Space Life Sciences
Publication Language: Ukrainian
Abstract: 
The state of a prooxidant-antioxidant system in the moss gametophyte Pohlia nutans (Hedw.) Lindb. in a real gravity and after clinorotation was investigated. The temporal dynamic of the lipid peroxidation primary and final products — diene conjugates and malonic dialdehyde was estimated under conditions of simulated microgravity. It is shown that the inducer of an antioxidant system in the conditions of gravitational stress is hydrogen peroxide, which causes the increase in catalase and peroxidase activity. It was ascertained a phase character of the prooxidant-antioxidant system reactions during clinorotation and reversibility of oxidative processes after stress.
Keywords: ascorbate peroxidase, catalase, clinorotation, hydrogen peroxide, lipid peroxidation, moss Pohlia nutans, peroxidase
References: 
1. Baraboi V. A., Zhad'ko S. I., Kordyum E. L., Sidorenko P. G. Lipid  peroxidation in plants of different organization levels under microgravity stress. Izv. Akad. Nauk SSSR Ser. Biol., 3, 368―375 (1991) [in Russian].
2. Baranenko V.V. Lipid peroxidation intensity and superoxide dismutase activity in pea plants under clinorotation: Extended abstract of candidate’s thesis, 24 p. (Kiev, 2003) [in Ukrainian].
3. Gavrilov V. B., Mishkorudnaya M. I. Spectrofotometric determination of lipid  hydroperozides level in plasma of blood. Laboratornoe delo, No. 3, 33―35 (1983) [in Russian].
4. Gazaryan I. G., Khushpul’yan D. M., and Tishkov V. I. Features of the structure and mode of action of peroxidases in plants. Usp. Biol. Khim., 46, 303―322 (2006) [in Russian].
5. Demkiv O. T., Khorkavtsiv Ya. D., Kyiak N. Ya., Kit N. A. Effect of gravity on photomorphogenesis of protonemata Pottia intermedia (Turn.) Fürnr., Pottiales.  Ukrainian Botanical Journal62 (3), 329—336 (2005) [in Ukrainian].
6. Dmitriev O. P., Kravchuk Zh. M. Reactive oxygen species and plant immunity. Cytology and Genetics, 39 (4), 64―74 (2005) [in Ukrainian].
7. Karpets Yu. V., Kolupaev Yu. Ye. Respons of plants on heating: molecular-cellular aspects. The Bulletin of Kharkiv national agrarian university. Ser. Biology, Is. 1 (16), 19―38 (2009) [in Russian].
8. Kordyum E. L., Sytnik K. M., Baranenko V. V., et al. Cellular mechanisms of plant adaptation to the adverse effects of environmental factors in vivo, 290 p. (Nauk. dumka, Kiev, 2003) [in Russian].
9. Korolyuk M. A., Ivanova L. I., Mayorova I. G., and Tokareva V. E. Method for Determining the Activity of Catalase. Lab. delo, No. 1, 16―19 (1988)
10. Lobachevska O. V., Khorkavtsiv Ya. D. Gravisensitivity in the moss ontogenesis. Kosm. nauka tehnol., 20 (5), 55―60 (2014) [in Ukrainian].
https://doi.org/10.15407/knit2014.05.055
11. Lobachevska O. V., Khorkavtsiv Ya. D., Kyyak N. Ya., Kit N. A., Danylkiv I. S. Gravimorphogenesisgametophytes of mosses. Kosm. nauka tehnol., 21 (4), 94―102 (2015) [in Ukrainian].
https://doi.org/10.15407/knit2015.04.094
12. Ermakov A. I. (Ed .) Methods of Biochemical Plant Research, 3rd revised and enlarged edition, 430 p. (Agropromizdat, Leningrad, 1987) [in Russian].
13. Musienko M. M., Parshikova T. V., Slavnyj P. S. Spectrophotometric Methods in Practice, Physiology, Biochemistry and Ecology of Plants, 200 p. (Fitosotsiotsentr, Kyiv, 2001) [in Russian].
14. Nedukha O. M. Plant cell wall and environment, 289 p. (Alterpress, Kyiv, 2015) [in Ukrainian].
15. KhorkavtsivY. D., Demkiv O. T. The effects of auxin transport inhibitors on gravitropism in photonemata of the moss Pohlia nutans (Hedw.). Kosm. nauka tehnol., 9 (2-3), 77—82 (2003) [in Ukrainian].
 https://doi.org/10.15407/knit2003.02.077
16. Barkasdjieva N. T., Chrostov K. N., Christina K. N. Effect of calcium and zinc on the activity and thermostability of superoxide dismuatse and peroxidase. Biol. Plant., N 43, 73―78 (2009).
17. Bradford M. A. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem., 72, 248―254 (1976).
https://doi.org/10.1016/0003-2697(76)90527-3
18. Demkiv O. T., Kordyum E. L., Kardash O. R., Khorkavtsiv O. Ya. Gravitropism and phototropism in protonemata of the moss Pohlia nutans (Hedw.) Lindb. Adv Space Res.,   23 (12), 1999―2004 (1999).
https://doi.org/10.1016/S0273-1177(99)00349-X
19. Gechev T. S., Hille J. Hydrogen peroxide as a signal controlling plant programmed cell death. J. Cell. Biol., 168 (1), 17―20 (2005).
https://doi.org/10.1083/jcb.200409170
20. Ghamsari L., Keyhani E., Golkhoo S. Kinetics properties of guaiacol peroxidase activity in Crocus sativus L. corm during rooting. Iranian Biomedical J., 11 (3), 137―146 (2007).
21. Hausmann N., Fengler S., Hennig A., Franz-Wachtel M., Hampp R., Neef M. Cytosolic calcium, hydrogen peroxide and related gene expression and protein modulation in Arabidopsis thaliana cell cultures respond immediately to altered gravitation: parabolic flight data. Plant Biol (Stuttg), 16, 120―128 (2014).
https://doi.org/10.1111/plb.12051
22. Kordyum E. L. Plant cell gravisensitivity and adaptation to microgravity. Plant. Biol., 16 (1), 79―90 (2014).
https://doi.org/10.1111/plb.12047
23. Madhava Rao K. V., Raghavendra S., Janardhan Reddy K. Physiology and molecular biology of stress tolerance in plants, 345 p. (Springer, 2006).
https://doi.org/10.1007/1-4020-4225-6
24. Martzivanou M., Babbick M., Cogoli-Greuter M., Hampp R. Microgravity-related changes in gene expression after short-term exposure of Arabidopsis thaliana cell cultures. Protoplasma, 27, 229―239 (2006).
https://doi.org/10.1007/s00709-006-0203-1
25. Miller G., Shulaev V., Mittler R. Reactive oxygen signaling and abiotic stress. Physiologia Plantarum, 133, 481―489 (2008).
https://doi.org/10.1111/j.1399-3054.2008.01090.x
26. Nakano Y., Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol., 22 (5), 867―880 (1981).
27. Neill S. J., Desikan R., Clarke A., Hurst R. D., Hancock J. T. Hydrogen peroxide and nitric oxide as signalling molecules in plants. J. Experimental Botany, 53, 1237―1247 (2002).
https://doi.org/10.1093/jexbot/53.372.1237
28. Nikawa T., Ishidoh K., Hirasaka K., Ishihara I., Ikemoto M., Kano M., Kominami E., Nonaka I., Ogawa T., Adams G. R., Baldwin K.M., Yasui N., Kishi K., Takeda S. Skeletal muscle gene expression in space-flown rats. FASEB Journal, 18, 522―524 (2004).
https://doi.org/10.1096/fj.03-0419fje
29. Ripetskyj R. T., Kit N. A., Chaban C. I. Gravity effects on the growth and development of moss secondary protonemata. Adv. Space Res., 21 (8/9), 1135―1139 (1998).
https://doi.org/10.1016/S0273-1177(97)00202-0
30. Vreeland V., Kwan N. Marine algal vanadium peroxidase: Substratum adhesion and active recombinant catalytic domain. Thesisis of Conference “Peroxidase 99” (July 17―21, 1999, Columbus, Ohio USA), 234―235 (1999).