The variability pattern and prediction of the quasar 3C 273 flux density variations in the radio band

1Donskykh, GI
1I.I. Mechnikov National University of Odessa, Ukraine
Space Sci.&Technol. 2016, 22 ;(3):41-49
https://doi.org/10.15407/knit2016.03.041
Section: Space Astronomy
Publication Language: Russian
Abstract: 
We present results of the analysis of the extragalactic radio source 3C 273 flux density variations, which was performed
on the basis of the monitoring data obtained at the University of Michigan Radio Astronomy Observatory over the period
of 37 years (1974–2011). Despite the large number of papers dedicated to the study of this radio source, this monitoring is unique and has no analogues. Using complementary methods of wavelet analysis and the singular spectrum analysis we found the properties of variability, which are not described before.
The presence of long-term variability components in the interval of ~ 7.2–8.3 years was detected in the 3C 273 flux density variations. We detected the presence of short-term components in the time interval of ~ 2–3.9 years, when excluding the long-term component. The temporal variations of the short-term component of wavelet spectrum at 14.5 GHz were compared to the spatial variations in the 3C 273 jet (using the Very-Long-Baseline Interferometry monitoring data at 15.4 GHz by the MOJAVE program).
Keywords: active galaxies, jets; radio source 3C 273
References: 
1. Aleksandrov F. I., Goljandina N. E. Automation of selected trend and periodic components of a time series in the framework of the "Caterpillar" method -SSA. Exponenta Pro. Matematika v prilozhenijah, N 3-4, 54—61 (2004) [in Russian].
2. Golyandina N. E. The Caterpillar-SSA Method: Time Series Analysis, 74 p. (SPb Gos. Univ., St. Petersburg, 2004) [in Russian].
3. Polikar R. Introduction to Wavelet transformation, Transl. from english by V. G. Gribunin, 59 p. (AVTJeKS, St. Petersburg, 2013) [in Russian].
4. Chistyakova A. A., Shamsha B. V. Identification of the structure of nonstationary time series with the Singular Spectrum Analysis Method. Radioelektronni i komp'uterni sistemi, N 4 (52), 105—111 (2011) [in Russian].
5. Abraham Z., Romero G. E. Beaming and precession in the inner jet of 3C 273. Astron. and Astrophys., 344, 61—67 (1999).
6. Aller H. D., Aller M. F., Latimer G. E., Hodge P. E. Spectra and linear polarizations of extragalactic variable sources at centimeter wavelengths. Astrophys. J. Suppl., 59, 513—768 (1985).
https://doi.org/10.1086/191083
7. Daubechies I. Ten lectures on wavelets, 343 p. (Society for Industrial and Applied Mathematics, Philadelphia, 1992).
https://doi.org/10.1137/1.9781611970104
8. Donskykh G., Ryabov M., Suharev A., Aller M. Analysis of the variability and the spectrum of periods of extragalactic source OJ 287 in the radio waves. Odessa Astron. Publs., 26 (2), 240—242 (2013).
9. Donskykh G. I., Ryabov M. I., Sukharev A. L., Aller M. F. The study of extragalactic sources 3C 446 and 3C 345 with using the singular spectrum analysis and wavelet analysis. Odessa Astron. Publs., 28 (2), 217—221 (2015).
10. Golyandina N., Shlemov A. Variations of singular spectrum analysis for separability improvement: non-orthogonal decompositions of time series. Statistics and Its Interface8 (3), 277—294 (2015).
https://doi.org/10.4310/SII.2015.v8.n3.a3
11. Hovatta T., Lehto H. J., Tornikoski M. Wavelet analysis of a large sample of AGN at high radio frequencies. Astron. and Astrophys., 488 (3), 897—903 (2008).
https://doi.org/10.1051/0004-6361:200810200
12. Hughes P. A., Aller H. D., Aller M. F. Polarized Radio Outbursts in Bl-Lacertae. II. The Flux and Polarization of a Piston-Driven Shock. Astrophys. J., 298 (1), 301—315 (1985).
https://doi.org/10.1086/163611
13. Lister M. L. Cohen M. H. Homan D. C., et al. MOJAVE:Monitoring of Jets in Active Galactic Nuclei with VLBA Experiments. VI. Kinematics Analysis of a Complete
Sample of Blazar Jets. Astron. J., 138 (6), 1874—1892 (2009).
https://doi.org/10.1088/0004-6256/138/6/1874
14. Lobanov A. P., Zensus J. A., Abraham Z., et al. Imaging and monitoring the parsec-scale jet in 3C 273 with the VSOP mission. Advs in Space Res., 26 (4), 669—672 (2000).
https://doi.org/10.1016/S0273-1177(99)01187-4
15. Marscher A. P., Gear W. K. Models for high-frequency radio outbursts in extragalactic sources, with application to the early 1983 millimeter-to-infrared flare of 3C 273. Astrophys. J., 298 (1), 114—127 (1985).
https://doi.org/10.1086/163592
16. Romero G. E., Chajet L., Abraham Z., Fan J. H. Beaming and precession in the inner jet of 3C 273. II. The central engine. Astron. and Astrophys., 360, 57—64 (2000).
17. Strauss M. A., Huchra J. P., Davis M., et al. A redshift survey of IRAS galaxies. VII - The infrared and redshift data for the 1.936 Jansky sample. Astrophys. J. Suppl. Ser., 83(1), 29—63 (1992).
https://doi.org/10.1086/191730
18. Türler M., Paltani S., Courvoisier T. J.-L., et al. 30 years of multi-wavelength observations of 3C 273. Astron. and Astrophys. Suppl. Ser., 134, 89—101 (1999).
https://doi.org/10.1051/aas:1999125
19. van den Berg J. C. Wavelets in Physics, 478 p. (Cambridge University Press, Cambridge, 2004).